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 Introduction: challenges for free boundary problems➢

 Keep track of a moving front

 Efficiently capture small scales

 Impose boundary conditions at the front

➤

➤

➤

DENDRITIC GROWTH



 Level-Set (Implicit)➢

 Challenges for free boundary problems➢

 Keep track of a moving front --> Level-Set Representation➤



 Challenges for free boundary problems➢

 Impose boundary conditions at the front --> Sharp Approach➤
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 Challenges for free boundary problems➢

 Impose boundary conditions at the front --> Sharp Approach

 Interested in macroscale simulations

➤

➤

Numerical Approximation



 Challenges for free boundary problems➢

 Efficiently capture small scales --> Adaptive Mesh Refinement➤



PART I:

Adaptive Quadtree/Octree Grids



 PDE solvers on Quadtree/Octree Cartesian grids➢

 FEM: Many pros - mesh generation challenging➤

 Test functions, IBP, ...

 Approximate the space

 Impose BC easily

 Leads to SPD

!

!

!

!



 PDE solvers on Quadtree/Octree Cartesian grids➢

 AMR: Many pros - block structures consume CPU and memory➤

 Approximate the operator

 Meshing straightforward

 Impose BC harder

 Advantages in parallelization

!

!

!

!



 PDE solvers on Quadtree/Octree Cartesian grids➢

 Tree grids: Rather recent - versatile
- reduce number of nodes

➤



Level=0
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 PDE solvers on Quadtree/Octree Cartesian grids➢

Level=0

Level=1

Level=2

Level=3

Level=4

 Tree grids: refine near the free boundary➤



 PDE solvers on Quadtree/Octree Cartesian grids➢

Level=0

Level=1

Level=2

Level=3

Level=4

 Cell structure: choice of data location➤
Discretization of the Navier Sokes equations on a MAC grid

I Viscosity in the x direction
⇢ (u⇤

t +U⇤ ·ru⇤) = µ�u⇤

I Viscosity in the y direction
⇢ (v⇤t +U⇤ ·rv⇤) = µ�v⇤

I Projection on the divergence-free subspace
� = r ·U⇤, Un+1 = U⇤ �r 

I Advection of the level-set function
�t +U ·r� = 0



 Definition at T-junction nodes➢

 Existing approaches: Aftosmis, Losasso, … : Cell based - FV. 

 Present approach: Node based (pros for level-set methods [Strain])

➢

➢



  Standard linear interpolation➤

 Definition at T-junction nodes➢



  Standard linear interpolation➤

 Definition at T-junction nodes➢



 Use derivative in the transversal direction – always possible for node-based grids

 Third-order accurate interpolation

 Only uses 2 (adjacent) cells

➤

➤

➤

 Definition at T-junction nodes➢



 Use derivative in the transversal direction - always possible for node-based grids

 Third-order accurate interpolation

 Only uses 3 (adjacent) cells

➤

➤

➤

 Definition at T-junction nodes➢



 Application to solving the Poisson equation➢

 Linear system non-symmetric

 M-matrix, thus invertible

 Second-order accurate solutions in max norm

 Second-order accurate gradient in max norm

➤

➤

➤

➤



 Application to Stefan problems➢

 Diffusion dominated phenomena

 Used in modeling solidification processes, epitaxial growth…

 Parabolic problem

➤

➤

➤



PART II:

Mixed Boundary Conditions

At

Irregular and Free Boundaries



 Imposing Boundary Conditions➢

 Locally uniform near the interface➤



 Mixed boundary conditions: Dirichlet-Neumann-Robin➢

 Implicit representation of the domain – Applicable to moving boundaries➤



 Neumann and Robin boundary conditions➢

 Divergence theorem➤



 Neumann and Robin boundary conditions➢



 Dirichlet boundary conditions➢



 Main features➢

 SDP – Guarantees stability – Fast solvers

 2nd order accurate in the max-norm

➤

➤

MIXED ROBIN-NEUMANN-DIRICHLET IN 2D

MIXED ROBIN-NEUMANN-DIRICHLET IN 3D



PART III: 

LEVEL-SET TECHNOLOGY

CURVATURES

GRAIN GROWTH



 Front-Tracking (Explicit)➢

 Level-Set (Implicit)➢

Accurate but changes in topology are difficult to handle

Automatic changes in topology but less accurate



 Method of lines➤

 Level-set evolution equation➢

 Godunov approximation of the Hamiltonian➤

 Time evolution: TVD-RK schemes➤



256x256 (blue) 

128x128 (red) 

64x64 (green)

T = 4

 Application to the level-set method➢

 Loss of volume in level-set methods➤

 Adaptivity balances volume conservation with CPU efficiency➤

T = 6

ADAPTIVE 2D ADAPTIVE 3D



 Nonlinear effects➢

 Shock➤

 Rarefaction➤



n =
r�

|r�|

42

 Computation of curvatures➢

 Implicit representation

 Computations are sensitive to noise

➤

➤

 = r · n

EXACT NUMERICAL



NUMERICAL
43

 Reinitialization equation

 HJ-WENO scheme --> Fifth order accurate

 Gibou-Fedkiw (JCP 2005) --> Show that it is second-order accurate

➤

➤

➤

�t + Sign(�)|r�| = 1

 Computation of curvatures➢
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 Application to solving the Navier-Stokes equations➢

 Stability enforced at the discrete level➤
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 Application to solving the Navier-Stokes equations➢

 Stability enforced at the discrete level➤
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 Application to solving the Navier-Stokes equations➢

 Stability enforced at the discrete level➤
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 Rarefaction wave solution (DuChene-Gibou - JSC 2009)

 Fourth-order accurate reinitialization equation

 Second-order accurate curvatures

➤

➤

➤

RAREFACTION WAVE HJ-ENO CONSTRUCTIONS

 Computation of curvatures➢
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 DuChene Gibou (JSC 2009)

 Fourth-order accurate reinitialization equation

 Second-order accurate curvatures

➤

➤

➤

STANDARD LEVEL-SET METHOD DUCHENE-GIBOU

 Computation of curvatures➢



 Computation of curvatures➢

STANDARD LEVEL-SET METHOD DUCHENE-GIBOU

 DuChene Gibou (JSC 2009)

 Fourth-order accurate reinitialization equation

 Second-order accurate curvatures

➤

➤

➤
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 Occurs during heat treatment of polycrystalline materials

 The grain boundaries evolve to reduce the total free energy

 Minimize the total area

 Triple junctions 

 Driving force ~ curvature

➤

➤

➤

➤

➤

 Grain Growth➢

f = µ�(✓)



O(10)
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 Level-Set treatment possible

 Ongoing effort

➤

➤

 Grain Growth➢

 Uniform grids (local level-set?)

 N level-sets --> N phases

!

!

 Adaptive grids

         level-sets -->          phases

!

! O(106)



 2 level-set functions represent 4 grains

 Exterior grains cause interior grains to shrink

➤

➤
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 Grain Growth - 2D➢

dA

dt
= 2⇡�

✓
3

6
� 1

◆
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 Grain Growth - 2D➢

 Comparison to Von-Neumann/Mullins law

 Error in slope ~ 3.5%

 Max level 6

➤

➤

➤

dA

dt
= 2⇡�

✓
3

6
� 1

◆



d

dt
V 2/3 ⇡ 5.2885
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 Grain Growth - 3D➢

 3 level-set functions represent 5 grains

 One grain cut away in video so inner grain is visible

 Reuleaux tetrahedron satisfies

➤

➤

➤
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 Grain Growth - 3D➢

 Comparison to Theory

 Error in slope ~ 2.9%

 Max level 6

➤

➤

➤

d

dt
V 2/3 ⇡ 5.2885



PART IV:

Application to Solidification of
Binary Alloys



 Diffusion equations:

 Diffusion in the solid phase can be neglected 

 Convection effects are neglected here

➤

➤

➤

⌦s

⌦l

✓

�

n

 Application to the Solidification of Binary Alloys➢



 Continuity of the temperature field

 Heat flux balance

 Gibbs-Thompson relations

 Solute rejection equation

 Jump in the concentration

➤

➤

➤

➤

➤

T

xI

C

xI

T0

C0 =(To-Tm) / mL

C0

k C0

Solid

Solid

Liquid

Liquid

CONCENTRATION PROFILE NEAR INTERFACE

TEMPERATURE PROFILE NEAR INTERFACE

 Interface Conditions➢



 Application to the Solidification of Binary Alloys➢

SHARP CONCENTRATION PROFILE

 Ni-Cu

 Ignore Convective Effects

➤

➤



 Solving for the temperature field:

 Problem:

 Time Discretization:

 Special treatment is needed close to the interface

➤

➤

➤

➤



 Solving for the temperature field:

 Imposing the jump conditions:

➤

➤



 Solving for the concentration in the liquid phase:

 Time discretization:

 Dirichlet boundary condition:

 Close to the interface:

 Similar for the concentration in the solid phase

➤

➤

➤

➤

➤



 Computing the normal velocity from the concentration fields:

 Solute rejection equation

 4 steps calculation:

 The concentration fields are extended over the interface
 The normal gradient are computed
 Compute velocity from the solute rejection equation
 Extrapolate the velocity from the interface to the entire domain

 Time step Definition:

➤

➤

➤

1.
2.
3.
4.

➤



 Sharp: interface conditions are imposed at the interface at every time step

 No drastic time step restriction

 Tree-grid techniques lead to efficient computations

 Linear system are solved using a Multigrid method

 The algorithm scales with the number of nodes

 Parallelized using OpenMP

 On a level 10 (max res=1 024) it takes a few hours on an iMac (8cores)

➤

➤

➤

➤

➤

➤

➤

 Recap:➢



 Solidification of an Ni-Cu alloy➤

 Validation:➢



 Stable planar interface:

 Choose cooling parameters so that theoretically the interface is stable

➤

➤

V = 0 .01cm/s G = 2 .15 ⇥ 10 4K/m



 Stable planar interface:

 Convergence analysis:

➤

➤



 Stable planar interface:

 Convergence analysis:

 Planar stable interface

   dddd

 Energy balance

➤

➤

➤

➤

➤



 Stable planar interface:

 Accuracy analysis:

 Total energy:

➤

➤

➤



 Planar-Cellular-Dendritic transitions➤



 Planar-Cellular transitions➤

V = 0 .01cm/s G = 1 ⇥ 10 4K/cm



G = 2 ⇥ 10 3K/cm

 Cellular-Dendritic transitions➤

V = 0 .01cm/s



 Solutal boundary layer:

 Theoretical value:

➤

➤



 Primary arm spacing:

 Commonly accepted model:

➤

➤



 Formation of the secondary arms

 Max level 12 (4 096), V = 0.01 cm/s, G = 1 K/cm, l  = 0.3 cm

➤

➤



 Formation of the secondary arms:➤



 Secondary arm spacing:

 Commonly accepted model:

 Numerically we found:
                 

➤

➤

➤

Z2 = B (GSV�)
n

n = �0.334

n = �1

3



NUMERICAL RESULTSFFUNDAMENT ALSUNDAMENT ALS  OFOF  SOL ID I F I CAT IONSOL ID I F I CAT ION, KURZ AND FISHER



 Standard projection method (Chorin) based on the Hodge decomposition➤

 Oscillation triggered by even-odd decoupling➤

 Decomposition at the discrete level➤

 Decomposition at the discrete level➤

 Application to solving the Navier-Stokes equations➢



 Application to solving the Navier-Stokes equations➢

 Stability enforced at the discrete level➤

 L2 stability➤



Discretization of the Navier Sokes equations on a MAC grid

I Viscosity in the x direction
⇢ (u⇤

t +U⇤ ·ru⇤) = µ�u⇤

I Viscosity in the y direction
⇢ (v⇤t +U⇤ ·rv⇤) = µ�v⇤

I Projection on the divergence-free subspace
� = r ·U⇤, Un+1 = U⇤ �r 

I Advection of the level-set function
�t +U ·r� = 0

 Projection method – stability and accuracy➢

 MAC sampling provides stability on uniform grids➤



s3

s2

s1

s0

�1

� =
X si�i

s0

 Cell-based – Poisson solver➢

rp ⇡
X si(pi � p0)

s0�

p0

p1

p2

p3
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 Hybrid Fluid Solver on Quadtree➢

 Driven Cavity➤



PART V:

Efficient Parallel Computation 
of 

Eikonal Equation



 Eikonal equation: a core equation in the level-set technology➢

 Used to “reinitialize” the level-set function

 Repeated at each time step

➤

➤

 TVD schemes – Most accurate but computationally expensive

 Fast Marching Method – 

 Fast Sweeping Method –

➤

➤

➤

 Existing approaches➢

 Parallel FSM – Zhao et al.➢

 Straightforward – Assign each quadrant to different a processor

 Plateau for # processors > 2^d in R^d

 The // implementation requires more iterations than the serial one

➤

➤

➤

FAST SWEEPING METHOD



 The FSM uses a Godunov upwind differencing scheme on the interior nodes➢

 Nodes on a level are updated simultaneously

 Performance does not plateau

➤

➤

 Our approach: different sweeping ordering (Cuthill-McKee)➢

PRESENT PARALLEL IMPLEMENTATION



 Similar idea in 3D➢

 Sweeping ordering in 3D

  Load balancing strategy

➤

➤

 Divide and merge!



 Efficiency➢

 Distance function from a center source point in 3D with
four concentric spherical obstacles.
➤

CROSS-SECTION OF 3D COMPUTATION

PARALLEL SPEEDUP

COMPUTATIONAL TIME



 GPU Computing➢

 The existing parallel techniques have very limited
parallel speedup.

 Our method doesn't suffer the same limitations

 Great speedup results on GPUs

 Makes larger problems tractable

➤

➤

➤

➤

CROSS-SECTION OF 3D COMPUTATION



 Sharp treatment for the interface conditions

 Numerical result agree with theoretical predictions and experimental observations

 Curvature and grain growth

 Fluid in solidification, parallel efficiency, grain growth, ...

➤

➤

➤

➤

Conclusions
➢
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