
Chapter 13: Mesoscale Dynamics: Dislocation Dynamics examples
© Richard LeSar, 2013

I. Introduction
In Chapter 13 we discuss how we can define dynamical simulations at the mesoscale,
starting with the identification of the entities that will be modeled. In these exercises, we
focus on dislocations as the fundamental entities of the simulation. While fully three-
dimensional simulations are now the norm, much interesting work has been done using
simple two-dimensional models, as discussed in the textbook. Here we show how the
implementation of a simple 2D dislocation dynamics simulation is a simple extension of
the molecular dynamics codes developed in Chapter 6. We will start with a very
straightforward approach, which we will see is not correct owing to the choice of bound-
ary conditions. We will then show how that code can be corrected. We finally introduce
the beginnings of what it takes to do three-dimensional dislocation modeling by an ap-
proximate calculation of a Frank-Read source.

We note that Professor Wei Cai at Stanford has a much more elaborate set of MATLAB
codes to do 3D dislocation dynamics at his web site
http://micro.stanford.edu/~caiwei/Forum/2005-12-05-DDLab/
We encourage interested students to take advantage of his resources.

II. A model system
We will model a very simple system - a series of parallel, straight edge dislocations all
with line directions along the ±ẑ direction and Burgers vector along the ±x̂ direction.[1]
In the xy plane, these dislocations appear as points. We place the dislocations are in a
square simulation cell in the xy plane with periodic boundary conditions. The motion of
the dislocations is restricted to the glide plane, i.e., in the ±x̂ direction. The force per
length of dislocation in the ±x̂ direction on dislocation i from dislocation j is given by the
Peach-Koehler force,[2]
! Fx i() = bbiσ xy j() , ! ! ! ! ! ! ! ! ! (1)

where b is the magnitude of the Burgers vector, bi is the sign of the Burgers vector
(±1), and σ xy j() is the stress from dislocation j evaluated at dislocation i, which is

! σ xy j() = Gbbj

2π 1−ν()
x ji x ji

2 − y ji
2()

x ji
2 + y ji

2()2
 .! ! ! ! ! ! ! (2)

In Eq.(2), x ji = xi − x j and y ji = yi − y j . Since we are interested in generic behavior, we

will introduce the unit of stress σ o =Gb 2π 1−ν() and write all stresses in scaled units,
i.e., as

(1)

http://micro.stanford.edu/~caiwei/Forum/2005-12-05-DDLab/
http://micro.stanford.edu/~caiwei/Forum/2005-12-05-DDLab/

! σ xy j() = bj

x ji x ji
2 − y ji

2()
x ji
2 + y ji

2()2
! ! ! ! ! ! ! ! (3)

The force per length acting on dislocation i is

! Fx i() =
Gb2bjbi
2π 1−ν()

x ji x ji
2 − y ji

2()
x ji
2 + y ji

2()2
 ,! ! ! ! ! ! ! (4)

which in scaled units is

! Fx i() = bjbi
x ji x ji

2 − y ji
2()

x ji
2 + y ji

2()2
 . ! ! ! ! ! ! ! ! (5)

The net force on dislocation i from the rest of the simulations (including the periodic lat-
tice) is

!

FxT i()
L

= bi bj

x jiR x jiR
2 − y jiR

2()
x jiR
2 + y jiR

2()2j≠i=1

N

∑
R
∑ ,! ! ! ! ! ! (6)

where x jiR =Rx + xi − x j and y jiR =Ry + yi − y j , where


R = Rx ,Ry() is a lattice vector.

Our dislocation dynamics code is a variant of the molecular dynamics code introduced
in Chapter 6. A major difference is the solution of the equations of motion. As dis-
cussed in Chapter 13 of the textbook, dislocation motion does not conserve energy;
there are dissipative forces on dislocations that arise from the generation of phonons,
etc. The equation of motion becomes

! m d 2xi
dt 2

= Fx i()−Bvi , ! ! ! ! ! ! ! ! (7)

where B is the friction coefficient and vi is the velocity of the dislocation in the ±x̂ direc-
tion. If the damping is large (high friction), then the terminal velocity is reached in a time
that is small compared to the time step of the simulation. This case, called the over-
damped limit, allows us to ignore the initial inertial movement and use the relation

! v i =
Fx i()
B

=MFx i() ,!! ! ! ! ! ! ! ! (8)

where M=1/B is the mobility. In the following code, we ignore M, incorporating it into the
time scale. A simple solution to Eq.(7) is the Euler equation, which yields
! xi t + Δt() = xi t() +v i t()Δt . ! ! ! ! ! ! ! (9)

where Δt is the time step. We note that other, more sophisticated, solutions are
available.[3]

(2)

One complication when using Eq.(6) is that when dislocations are close to each other,
the forces can be very high, which can in turn lead to unphysically large changes in po-
sition when using a fixed time step. We could avoid that problem by using a small time
step, but that would be inefficient for times when the forces are small. Thus, in the
code below, we calculate the maximum stress at each time step (Fmax =max Fx i()())

and set the time step by
! Δt = Δxmax Fmax ,! ! ! ! ! ! ! ! ! (10)

where Δxmax is a parameter that sets the maximum distance a dislocation can move in a
time step. Note that this solution is not ideal. At the beginning of the calculation, we
may want to move the dislocations by a relative large amount to move quickly towards a
stable structure (Δxmax relatively large). However, near a potential minimum (zero force)
the dislocations could have relatively small motions, so we expect that we would want to
have Δxmax relatively small. The code could be modified to have as input the final posi-
tions of a previous run (replacing the initDD call).1 Then a series of calculations could
be done, introducing a smaller value of Δxmax as the system nears a stable minimum.

II. a. 2D Dislocation Dynamics Simulation: Implementation of a simple model

Examining Eq.(5) we see that the force is long ranged (~1/r at large separations), which
requires us to use a special technique to evaluate the lattice sums, as discussed below.
For now, however, we will ignore any issues with the long-ranged nature of the force
and just use the standard lattice sums that we introduced in Chapter 3.

The first step is to create the initial dislocation structure. In a routine called initDD, we
place dislocations at random in the simulation cell with even numbers dislocations with
positive and negative Burgers vectors. In the code, n is the number of dislocations and
the positions in the square cell span from 0 to D.

function[x,y,b] = initDD(n,D)
% we use the rand function, which creates a 1D array of random
% numbers between 0 and 1
 x = rand(n,1)*D;
 y = rand(n,1)*D;
 b = zeros(n,1);
% assign b with equal numbers of +1 and -1
 for i=1:n/2
 b(i) = 1;
 end
 for i=n/2+1:n
 b(i) = -1;
 end

(3)

1 Note that since the y positions and the Burgers vectors do not change in a simulation, only the x posi-
tions need to be modified from run to run.

In the main code, in the file DD2D.m, we call sumDD, in which we sum the forces on
each dislocation. This routine is a modified version of the code for the Lennard-Jones
atom in Chapter 6. We evaluate the sum in Eq.(6) using the minimum image conven-
tion and a cutoff set to have the box size, i..e, rc =D / 2 . Note that the time step is set
by the maximum force.

The code:

% input: ndis = the number of dislocations
% nsteps = number of time steps
% dxmax = maximum move per time step
%
% output: xi=initial x positions,x = final positions,y,b
% fx = final forces on each dislocation
% xdm = the maximum distance a dislocation has moved in the
% calculation

function[xi,x,y,b,vex,xdm] = DD2D(ndis,nsteps,dxmax)
% set size of system (arbitrary)
D = 1000;
% set cutoff to be 1/2 the box length
rc = D/2;
% initial positions
[x,y,b] = initDD(ndis,D);
% store initial position
xi = x;

% start the time steps
for j=1:nsteps
[fx,fmax] = sumDD(ndis,D,rc,x,y,b);
 dt = dxmax/fmax;
 for i=1:ndis
 x(i) = x(i) + fx(i)*dt;
 if x(i) > D
 x(i) = x(i) - D;
 end
 if x(i) < 0
 x(i) = x(i) + D;
 end
 end
end
xd = x - xi; % change in position over the run
xd = xd - D*round(xd/D); % remove movement across periodic boundaries
xdm=max(abs(xd)); % find maximum movement

(4)

The total force comes from the function in sumDD.m. It is based on the use of the
minimum-image convention plus a cutoff (rc) set to the box length (D) divided by 2.

function[fx,fmax]= sumDD(n,D,rc,x,y,b)
% set force component to 0
fx=zeros(n,1);

for i = 1:n-1 % note limits
 for j=i+1:n % note limits
% mimimum image convention
 dx = x(i) - x(j);
 dy = y(i) - y(j);
 dx = dx - D*round(dx/D);
 dy = dy - D*round(dy/D);
 dsq = dx^2 + dy^2;
 dist = sqrt(dsq);
 if dist <= rc
 ffx = b(i)*b(j)*dx*(dx^2-dy^2)/dsq^2;
 fx(i) = fx(i) + ffx;
% add -f to sum of force on j
 fx(j) = fx(j) - ffx;
 end
 end
end
% calculate maximum value of force
fmax=max(abs(fx));

The output of the simulation includes the initial
(xi) and final (x,y,b) configurations. There
are many ways to plot these. One simple way is
to use the MATLAB function scatter with filled
symbols and use the value of the Burgers vector
to set the color, e.g.,

scatter(x,y,50,b,'d','fill');axis
square

This yields output like that shown in the figure
(the initial configuration for 500 dislocations in a
simulation cell of size a=1000).

Exercise:

1. Using the code provided, run simulations until the microstructure has approxi-
mately converged. The final forces (fx) should be for the most part small,

Figure 1: Initial random configuration
of a set of edge dislocations with
Burgers vectors along the x axis.
Colors indicate the sign of the dislo-
cation.

(5)

though some dislocations may have larger forces acting on them, which gener-
ally arise from strong local interactions in dislocation dipoles, which are two dis-
locations with opposite sign that are close to each other on different slip planes.
The forces on the dislocations in the dipoles are large and opposite in sign, and
will show up as spikes in a plot of the final forces. Since the forces are large, and
we do not directly include damping when using a linear force-velocity dynamics,
we will generally see oscillations in the positions of closely bound dipoles.

In the simulation shown in the figure, N = 500 dislocations were included. Vary
the size of the Δxmax parameter. Does its choice affect the rate of convergence?

When you are satisfied that the simulation is at least relatively close to its con-
verged state, plot the final structure and comment. Compare to results shown in
Reference [1].

II. b 2D Dislocation Dynamics Simulation: Implementation with full periodicity

In the simulations from Problem I, you should have seen a very curious microstructure;
the dislocations tend to form vertical lines made up of like-signed dislocations. Note the
pattern. You should have seen 4 lines of dislocations, alternating in sign. Note that the
lines with the same sign are separated by half the box length, i.e., at the cutoff distance.
These are not realistic microstructures. As we shall see, that structure is an artifact of
the use of a cutoff in a system with long-ranged interactions. This point is discussed in
[1].
While there are a number of ways to incorpo-
rate the effects of the long-ranged interactions,
we use an approach introduced in [1]. Sup-
pose we are interested in the force from dislo-
cation a acting on dislocation b, as described in
Figure 2. What we actually need, based on
Eq.(6), is the force from a and all its replicas
throughout space. Consider first just the repli-
cas of a in the y direction, which corresponds
to a repeating set of dislocations separated by
D, the size of the simulation cell. This type of
structure is just a tilt grain boundary. Hirth and
Lothe [2] show that the stress from that line of
dislocation is

σ xy j() = Gbj

2πD 1−ν()
t cosht cosu −1()
cosht − cosu()2

 ,! (11)

where t = 2π x ji D andu = 2π y ji D . An impor-

a b

Figure 2: 2D periodic array with 2
dislocations per the simulation cell.
The stress field from dislocation a
and its images can be taken as a
sum of the stress fields of parallel
lines of periodic dislocations aligned
along the y-axis.

(6)

tant feature of the expression in Eq.(11) is that at large x, (remembering that
cosh t() = e−t +et() 2)

! σ xy j() ~ t cosht cosucosh2(t)
~ t e−t cosu .! ! ! ! ! ! (12)

Thus, the stress from a line of dislocation falls off exponentially in the direction perpen-
dicular to the line. (Note that this argument still works if xji < 0.) Thus, we can find the
total stress from j and its replicas by summing over the vertical lines (see Figure 2),

! σ xy j() = Gbj

2πD 1−ν()
tn coshtn cosu −1()
coshtn + cosu()2n=−m

m

∑ ,! ! ! ! ! (13)

where tn = 2π x ji D + n() . Because of the short range nature of the stress from the line

seen in Eq.(10), we can use a relatively small value for m, i.e., we do not need to in-
clude many lines in the ±x̂ direction.

Implementation of Eq.(13) in the 2D dislocation dynamics code is straightforward. One
simply replaces the sum based on Eq.(6) (i.e., that based on the minimum image con-
vention) by a direct sum over the dislocations, where each stress call involves the sum
over a series of vertical lines in Eq.(13). We note that this approach is appreciably
slower than using the minimum image convention in Section II. However, this approach
includes all interactions in a proper way.
There are few changes in the main code (in DD2Dp.m). We added an input parameter
that sets the value for m in Eq.(11) and changed the call for the routine that calls the
summation of the force (in sumDDp.m). The force calculation dispenses with the mini-
mum image convention and replaces it with a sum over the stresses given in Eq.(11):
function[fx,fmax]= sumDDp(n,a,m,x,y,b)
% set force component to 0
fx=zeros(n,1);
for i = 1:n-1 % note limits
 for j=i+1:n % note limits
% stress relative to the dislocation lines
 dx = -x(j) + x(i);
 dy = -y(j) + y(i);
 [stress] = stressp(dx,dy,a,m);
 pkf = b(i)*b(j)*stress;
 fx(i) = fx(i) + pkf;
 fx(j) = fx(j) - pkf;
 end
end
% calculate maximum value of force
fmax=max(abs(vx));

In stress.m we calculate the total stresses of Eq.(11):

(7)

function[stress]= stressp(dx,dy,a,m)
u = 2*pi*dy/a;
t = 2*pi*dx/a;
stress = 0;
for n = -m:m
 tn = t - 2*pi*n;
 f = tn*(cosh(tn)*cos(u)-1)/(cosh(tn)-cos(u))^2;
 stress = stress + f/a;
end

The parameters are as defined in Eq.(11).

II.c Interaction with an external stress field

The interaction of a dislocation (i) with an external stress field τ is just bi τ , so plus-
signed dislocations are pushed in one direction and like-signed dislocations the other.
The code can be modified to include an external stress, for example by changing it to
something like:

 for j=1:nsteps
 [fx,fmax] = sumDDp(ndis,a,mm,x,y,b);
 dt = dxmax/fmax;
 for i=1:ndis
 f = fx(i) + sig*b(i);
 x(i) = x(i) + f*dt;
 if x(i) > a
 x(i) = x(i) - a;
 end
 if x(i) < 0
 x(i) = x(i) + a;
 end
 end
end

The plastic strain under stress can be calculated by first relaxing the dislocation posi-
tions and storing those positions (e.g., as xo{ }). After a stress is applied, the disloca-

tions will move along their slip planes, from which one can calculate their change in po-
sition Δxi = xi − xio . Based on the standard analysis of strain created by the movement
of dislocations (see, for example, the book by Hull and Bacon [5]), the plastic strain is

!

γ p =

1
D2 biΔxi

i=1

N

∑ .! ! ! ! ! ! ! ! ! (14)!

! ! ! ! !

(8)

Note that periodic boundary conditions must be taken into account when calculating

 Δxi .

II. d Scaling

We have introduced this model with reduced units, removing all the materials parame-
ters. The only length scale left in the problem is the mean inter-dislocation spacing, ,
where the dislocation density is ρ =N /D 2 , and N is the number of dislocations. Note

that ρ−1/2 =D / N .

Exercises:

Note: These calculations increase in complexity .

2. Using a code based on Eq.(11)-(13), place an even number of dislocations randomly
into a simulation cell. Choose an initial value for Δxmax . Run simulations until the
microstructure has approximately converged. It might be easiest to modify the code
so that you an restart from an earlier run. It is easy to do by adding the x, y, and b
variables as input and output. Thus you can take the output from one run can serve
as the input for the next. (See footnote on page 3)

For a converged structure, the final forces (fx) should be for the most part small,
though some dislocations may have larger forces acting on them. These large
forces generally arise from strong local interactions between dislocation dipoles -
pairs of dislocations with the opposite sign. In practice, we will see oscillations in the
positions of closely bound dipoles. Since the dipoles are two dislocations with op-
posite sign that are close to each other, in real materials they might annihilate, which
is not taken into account in this code. When you are satisfied that the simulation is at
least relatively close to its converged state, plot the final structure and compare to
results from Problem 1 and those shown in Reference [1]. Vary Δxmax to examine
how its choice affects the final results.

3. In reference [1] the authors introduced a correlation function to describe the local or-
der in the dislocations. For a dislocation at the origin, it gives the probability that
there is another dislocation at a position (x,y) relative to the origin. It is thus similar
to the radial distribution function discussed in the text for atomistic simulations and
whose implementation is described in the problems for Chapter 6. The correlation
function introduced for dislocations is somewhat different, however, because the in-
teractions between dislocations of the same sign differ from those between disloca-
tions of opposite sign. Coupled with the anisotropy of the dislocation stress fields,
the local ordering for like-signed dislocations is very different than that for disloca-
tions with different signs.

(9)

Based on the calculation for g(r) given in the exercises for Chapter 6, calculate the
weighted distribution function of [1] by calculating g ++ x,y() based on dislocations

with the same sign and g +− x,y() for dislocations with opposite signs. The net corre-

lation function can be defined as g x,y() = g ++ x,y()− g +− x,y() . Compare g x,y() for
calculations with different dislocation densities and the compare by scaling the x and
x axes by the mean interdislocation spacing, ρ−1/2 . How do they compare?

1. Modify the code to include an external stress (see Section II.c). Vary the external
stress and examine how the dislocation structures change. Compare the distribution
functions as calculated in Problem 3 for systems under varying stress. Determine
the stress-strain behavior and comment.

2. A simple model for a tilt grain boundary can be created by creating a fixed line of
edge dislocations in the y direction. For example, suppose for a cell of size D that
we placed a series of dislocations with Burgers vector bg at positions x0,i a() ,
where i is an integer that spans from 1 to D / a . As long as D / a is an integer, then
(with the periodic boundary conditions), this would create an infinite line of disloca-
tions of spacing a . The stress from this line of dislocations is given by Eq.(11), with
D replaced by a. The angle of the boundary is given by 2sin θ / 2() = bg / a .[3] For a
boundary with a D , from Eq.(12) we see that the stress would be very short-
ranged (so no need to sum over the lines of the replica grain boundaries). To avoid
issues with lattice rotations, it may make the most sense to place one grain bound-
ary at xo =D / 4 with b = bg and another at xo = 3D / 4 with b = −bg . Implement
this simple model for a grain boundary and model the deformation structure devel-
opment as a function of applied stress. Determine the stress-strain behavior and
compare with Problem 4.

III. Simulation of Frank-Read source

Dislocation-based plasticity is decidedly three-dimensional and the simple model of
“point dislocations” described in Section II is inadequate. In this section we will just
scratch the surface on how one can extend those simple models to fully-three-
dimensional dislocation dynamics. We introduce the basic concepts by creating a simu-

(10)

lation of a Frank-Read source. We empha-
size again that what is presented here is just
the beginnings of a much more complex
simulation method. As noted above, Profes-
sor Wei Cai at Stanford has a much more
elaborate set of MATLAB codes to do 3D dis-
location dynamics based on [3] at his web
site2.

For this example, we will consider a Frank-
Read source that consists of a dislocation
line pinned at each end. These pinning
points could be sessile junctions or points at
which the dislocation leaves the glide plane. We will not worry about the details, but will
just assume that the ends of the dislocation segment are fixed. The glide plane of the
Frank-Read source will be taken as the xy plane and the initial dislocation line is aligned
along the x axis, as shown in Figure 3. As a stress is applied to the Frank-Read source,
the dislocation bows out and eventually wraps back around the fixed sites, as shown in
Figure 4. Note that the Burgers vector in Figure 4 is the same for the entire dislocation.
The line direction follows the dislocation line from the fixed point on the left to that on
the right. Thus, the line direction of the two segments below the line between the fixed
points are in opposite directions. Those segments would annihilate, leaving an expand-
ing loop and a new Frank-Read source. Our goal in this section is to model the opera-
tion of the source, at least to the configuration shown in Figure 4.

The model we will use is very simple. We will
ignore the elastic interactions between differ-
ent segments of the dislocation and will only
consider the interaction of the dislocation with
an external stress field. We will approximate
the effects of the line energy o the dislocation
by assuming a simple line-tension model,
which you may have seen in introductory
classes on the mechanical behavior of materi-
als.

IIIa. Effects of an external stress
Suppose we apply an external stress σ to this
system. The general stress tensor is

x

y


b


ξ

Figure 3: Schematic of the Frank-Read
source reflecting the coordinate system.

Figure 4. Frank-Read source.

(11)

2 http://micro.stanford.edu/~caiwei/Forum/2005-12-05-DDLab/

http://micro.stanford.edu/~caiwei/Forum/2005-12-05-DDLab/
http://micro.stanford.edu/~caiwei/Forum/2005-12-05-DDLab/

! σ =

σ xx σ xy σ xz

σ xy σ yy σ yz

σ xz σ yz σ zz

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

.! ! ! ! ! ! ! ! (15)

For our sample problem we take the Burgers vector to be along the y axis,

b = b 0,1,0() ,

as indicated Figure 3. The initial line direction is ξ̂ = 1,0,0() . Since the Burgers vector is
perpendicular to the line direction, the dislocation segment is (initially) an edge disloca-
tion.

As the dislocation responds to an external stress, it will begin to move. Since the ends
are fixed, it will bow out and thus segments of the dislocation will take on a general ori-
entation in the xy plane, i.e., the unit vector along the line direction will be of the form

! ξ̂ = ξx ,ξy ,0() , !! ! ! ! ! ! ! ! ! (16)

where ξ̂ ⋅ξ̂ = ξx
2 + ξy

2 = 1.

The force per length on a dislocation is given by the Peach-Koehler force

!


F
L
=

b ⋅σ()× ξ̂ .! ! ! ! ! ! ! ! ! (17)

Inserting the stress tensor from Eq.(15), the Burgers vector, and the general line direc-
tion from Eq.(16) into Eq.(17), we find that the force on the dislocation in the xy plane is

!


F
L
= bσ yz −ξy ,ξx() = b τ −ξy ,ξx() ,! ! ! ! ! ! ! (18)

where we use τ =σ yz . Note that the magnitude of the force is

!

F
L
=

F
L

= bτ ,! ! ! ! ! ! ! ! ! (19)

where for a given stress, bτ is just a constant. We will use a parameter for bτ in our
model.

Consider Eq.(18). At the beginning, the dislocation is aligned along the x axis and the
only force on the dislocation is in the y direction. However, since the ends are fixed, the

(12)

segments near the fixed points will have both an x and a y component, leading to forces
on the nodes in the x direction.

IIIb. Representation of the dislocation
Dislocations are, in general, curved, not straight. However, we will approximate the
shape of the dislocations using a set of connected straight segments, as shown In Fig-
ure 5. That figure also intro-
duces the notation that will be
used in the MATLAB code de-
scribed below. In the figure, a
series of nodes has been distrib-
uted along a dislocation curve,
which have then been connected
by straight segments. The
slightly larger black nodes at the
two ends are fixed. We will find
the net forces on the other nodes
and will determine their motion in
response to those forces, in much
the same way as we moved atoms
in molecular dynamics or the straight dislocations in Section II. As the nodes move, the
straight segments will, of course, also change. We will foreshadow the discussion by
noting that the nodes are not independent - they are abstractions representing arbitrary
places on the dislocation. Thus, their dynamics show differences from what we have
seen elsewhere in this course.

Note the two numbering systems in Figure 5. The black numbers indicate the nodes,
running sequentially from the fixed point on the left to that on the right. Their positions
are indicated by

r . The segment numbers are indicated in the figure as [i]. Note that if
there are n nodes total, there are ns = n - 1 segments.

The lengths of the segments are given by (in the notation of Figure 5)

!  i =
ri+1 −

ri = ri+1 −
ri() ⋅ ri+1 − ri()()1/2 ,!! ! ! ! ! ! (20)

while the line directions of the segments are

!

ξ̂i =
ri+1 −

ri
 i

! ! ! ! ! ! ! ! ! ! (21)

IIIc. Forces on the nodes.

Figure 5. Schematic view showing representation
of a dislocations as a series of straight segments.
Also shown are the numbering schemes used in
the text.

1
2

3 4 5
6

7

r

[1]
[2] [3] [4] [5]

[6]

(13)

Based on Eqs.(18-21), the force on all points along the ith segment is the same, so the
total force on the segment is

!


Fi
s = b τ −ξiy ,ξix() i .! ! ! ! ! ! ! ! ! (22)

In Chapter 10 of Reference [3], Bulatov and Cai describe in detail how one can calcu-
late the force on a node based on the forces on the segments connected to the node.
They are primarily concerned with cases in which the force changes along the length of
the segment, which would be the usual case when the dislocations interact with each
other. They showed that the net force on a node is a weighted average of the forces on
the segments adjacent to the node. In the present model, there are no interactions be-
tween dislocations and the force on each segment is the uniform force given by Eq.(22).
In this case, the force on a node is just the simple average of the forces on the adjacent
segments,

!


Fi
n =

Fi−1
s +

Fi
s() / 2 .! ! ! ! ! ! ! ! ! (23)

There is also a force associated with the linear change in energy as the length of the
dislocation changes. If the energy per length of dislocation is E , then the force on a
node is just E times the unit vector from that node to its adjacent node, i.e., the force is
along the direction needed to decrease the length of the segment. This force can be
written as

!


Fi
 = E −ξ̂i−1 + ξ̂i() .! ! ! ! ! ! ! ! ! (24)

The net force on a node (in this simple model) is

!

Fi
T =

Fi
n +

Fi
 . ! ! ! ! ! ! ! ! ! (25)

IIId. Equations of motion.
In Section II we describe a model in which the structure of individual dislocations is fixed
and they move as independent entities. In atomistic simulations, the atoms also move
as independent entities. The equations of motion are straight forward; the forces on
each entity are calculated and the velocities are given as solutions to Newton’s equa-
tions. For dislocations, which have strong frictional forces, we often assume the over-
damped limit of Eq.(8), which leads to the simple equation for the change of position
shown in Eq.(9).

Consider a node in Figure 5. It is not a particle - it is just a marker that indicates a posi-
tion on the dislocation. As such, the nodal positions and velocities are not independent
of the other nodes and the velocities cannot be written in the simple form of Eq.(8). Bu-
latov and Cai [3] give expressions for the velocity that take into account the interconnec-

(14)

tions between the nodes. Their approximate expression for the nodal velocity, which we
use in these examples, is

!

vi
n ≈


Fi
n

B  i−1 +  i() / 2 ,! ! ! ! ! ! ! ! ! (26)

i.e., the force in Eq.(8) divided by the average of the lengths of the segments adjacent
to the node. We use the simple Euler expression from Eq.(9) to propagate the nodal
positions, though, as mentioned above, more sophisticated methods are available.[3]

IIIe. Remeshing
Consider the initial Frank-Read source in Figure 3 and compare that to a later stage in
Figure 4. Suppose we start a calculation with a fixed number of nodes. As a later con-
figuration is reached, such as in Figure 4, the dislocation has greatly increased in
length. If the number of nodes is fixed, then the separation between the nodes will in-
crease and the dislocation may not be modeled accurately. To preserve accuracy, new
nodes will need to be added. On the other hand, if the separation between nodes be-
comes too small, then nodes might need to be removed. If dislocations formed junc-
tions, then nodes would need to be eliminated and, perhaps, new ones added. This
general procedure is often referred to as remeshing. Bulutov and Cai [3] discuss various
remeshing procedures at length. For this exercise, we will only invoke the addition of
nodes as the separation between them increases. We will simply assume that if the dis-
tance between two adjacent nodes is greater than some prescribed value, then a new
node will be inserted halfway between the existing nodes.

IIIf. Implementation
We emphasize that this code is designed explicitly for modeling the beginnings of a
Frank-Read source. It does not include the annihilation and remeshing necessary to
create a growing loop and the activation of the source for a second time. We leave that
to the exercises. In the following, the external stress and Burgers vector are lumped
into a single constant btau = b τ, the energy per length of dislocation is el = E , the
damping (friction) coefficient is b = B, and the time step is dt.

We start be assuming the position of the fixed nodes and the initial node distribution. As
a simple example, we assume the fixed nodes are located at (0,0) and (10,0). We then
put a node at each integer point in between the fixed nodes, e.g.,

!
r = 0,0(), 1,0(), 2,0(), 3,0(), 4,0(), 5,0(), 6,0(), 7,0(), 8,0(), 9,0(), 10,0(){ }

In a MATLAB code, that could be written as

! r = [0 0;1 0;2 0;3 0;4 0;5 0;6 0;7 0;8 0;9 0;10 0];

Thus, the total number of nodes is n = 11 and the number of segments is ns = n - 1 =
10. Only the inner 9 nodes can move.

(15)

For a given distribution of nodes, we need to calculate the lengths and line directions of
the segments. From these values, we can use Eq.(22) to calculate the net force on
each segment. In MATLAB, those calculations could look like

 for i=1:n-1
 dr(i,:) = r(i+1,:)-r(i,:);
 li(i) = sqrt(dot(dr(i,:),dr(i,:)));
 xi(i,:) = dr(i,:)/li(i);! ! ! ! ! ! ! ! (A)
 fi(i,:) = btau*[-xi(i,2) xi(i,1)]*li(i);
 end

Note the construction r(i,:), which indicates the complete ith entry in the vector r,
which would be the pair of (xi,yi) values for that position. Once we have calculated the
values for the segments (Loop A), we can determine the forces on nodes using
Eq.(23)-(25). From these forces, the velocity of the nodes is given by Eq.(26). Once we
have the velocities, we can calculate the new positions as in Eq.(9). All of these values
can be calculated in a single loop, remembering to only include the interior (non-fixed)
nodes, yielding the new nodal positions for this time step.

 for i=2:n-1
 fn1(i,:) = (fi(i-1,:) + fi(i,:))/2;
 fl(i,:) = el*(-xi(i-1,:) + xi(i,:));!! ! ! ! ! (B)
 fn(i,:) = fn1(i,:) + fl(i,:);
 vn(i,:) = 2*fn(i,:)/(b*(li(i-1)+li(i)));
 rnew(i,:) = r(i,:) + vn(i,:)*dt;
 r(i,:) = rnew(i,:);
 end

Loops A and B will be evaluated for each time step, yielding the change in nodal posi-
tions.

As you will see in the exercises, having a fixed set of nodes yields rather inaccurate re-
sults over time (the length increases with time). We can remesh the nodes as described
above by inserting an extra node midway between any connected nodes whose separa-
tion is greater than some parameter (lmax). We need to be careful to put the nodes in
a sequential order so that we maintain the correct topology. One way to do this is to
create a new array of nodal positions (rs in this example) in the correct order and then
to rename that as r. Note that as we have written this code, we need to add the final
fixed mode, which we do using the cat function.

% remesh
 k1=1;
 for i=1:n-1
 rs(k,:) = r(i,:);
 dr(i,:) = r(i+1,:)-r(i,:);
 lir(i) = sqrt(dot(dr(i,:),dr(i,:)));
 if lir(i) > lmax
 k1 = k1 + 1;
 rs(k1,:) = r(i,:) + dr(i,:)/2;

(16)

 end
 k1 = k1 + 1;
 end
 r=cat(1,rs,xr);
 n=length(r);

We have provided two working codes along with these exercies. On code has a fixed
number of nodes and one remeshes the nodes as the simulation proceeds.

Exercises:

A caveat: We do NOT include dislocation-dislocation interactions in the Frank-Read
source code. Thus the dislocation behavior is not correct, especially when it loops back
around the fixed points and the segments approach each other. Not only do they not
interact as they should, there is no annihilation, which is needed for further operation of
the loop.

6. Using a code without remeshing, assume values for the materials constants and run
the simulation for a loop. We note that realistic parameters are not needed to study
generic behavior (e.g., setting the materials parameters to 1 is not a bad way to be-
gin). Start with a coarse mesh, as suggested above. Choose a time step that yields
reasonable numerical solution (e.g., for all constants set to 1, a time step of dt =
0.1) should be sufficient). Compare the simulated results to the configuration in Fig-
ure 4. Note that if the simulation is run long enough, the dislocation lines that have
looped around the fixed point can move through each other. This is unphysical.
They have a different sense at that point and would annihilate.

7. Using the fixed node code, start with an uneven distribution of nodal points, with a
higher concentration of points near the fixed nodes. Run the simulation and com-
pare with the Problem 6. Do you notice any numerical instabilities? If so, where?
Does changing the time step help?

8. Modify the code so that the system remeshes. Vary the maximum length of a seg-
ment to see how that effects the final microstructure. For the same parameters,
compare the net shape of the loop with a remeshed solution with that from a coarse
set of nodal points. How much inaccuracy was introduce with the fixed nodes. We
note that Figure 4 was created with code provided in the exercises.

9. Explore the parameter space. For a constant value of btau, what happens as the
line energy is increased? Is there value for line energy relative to the applied stress
beyond which the source will not operate? If so, what is it? Compare with the ex-
pected value for the stress needed to operate a Frank-Read source from elementary
dislocation theory.

(17)

10.Modify the code to enable annihilation of the oppositely aligned segments below the
line between the fixed nodes (e.g., as in Figure 4). Introduce criteria for when anni-
hilation will occur and justify those criteria. After annihilation, there should be a
closed loop and a curved line between the fixed node. Note that this will require an
identification of two types of dislocations, one with the end points fixed and the other
a closed loop.

References

1. “Dislocation distributions in two dimensions,” A. N. Gulluoglu, D. J. Srolovitz, R.
LeSar, P. S. Lomdahl, Scripta Metallurgica 23, 1347-1352 (1989).

2. Theory of Dislocations , J. P. Hirth and J. Lothe, (Kreiger Publishing, Malabar, Flor-
ida, 1992).

3. Computer Simulations of Dislocations, V. V. Bulatov and W. Cai, (Oxford University
Press, New York, 2006).

4. “Analysis of dislocation microstructures: Impact of force truncation and slip sys-
tems,” H. Y. Wang, R. LeSar, and J. M. Rickman, Philosophical Magazine A 78,
1195-1213 (1998).

5. Introduction to Dislocations, 4th Edition, D. Hull and D. J. Bacon (Butterworth
Heinemann, Oxford, UK, 2001).

(18)

