

classical nucleation theory (details))		
What is the free energy in classical nucleation theory?			
$F_{CNT}(n) - F_{CNT}(1) = -k_B T \ln(\rho_{EQ}(n) / \rho_{EQ}(n))$	(1)). (important – not a Landau free energy, c.f. Maibaum PRL 2008)		
Which nucleus is least common at equilibrium? $dF_{CNT}/dn = 0$			
$n^{\ddagger} = (2\gamma a / 3\Delta \mu)^{3}$ The free energy 'barrier' is $F_{CNT}(n^{\ddagger}) = \frac{4(\gamma a)^{3}}{27\Delta \mu^{2}}$	remarkable simplicity stems from the assumption that nuclei are of fixed shape (<i>a</i>) and properties (γ , $\Delta\mu$) at every size <i>n</i> down to <i>n</i> = 1 molecule.		
Are we there yet? No. This is just a static equilibrium description.			
Agarwal & Peters, Adv. Chem. Phys. (in press)	Baron Peters UCSB		

- · free energy barriers are not observables
- HEN rate is not "faster than" HON rate (they have different units)
- what happens en route to bottleneck is kinetically irrelevant
- no hypothesis, no control, no test, no science
- ensembles matter: solute precipitate nucleation in grand or semigrand
- guessing coordinates is so '90s we have ways to get them right now
- use the correct free energy with the correct rate theory

Table 1: S dependence of pre-exponential factor			
attachment kinetics	$\rho_1 ZD(n_t) \exp[F(1)/k_B T]$	S-dependence	
diffusion controlled	$4\pi \mathcal{D}R_{\pm}\rho_{1}^{2}Z\exp[F(1)/k_{B}T]$	$\sim S \ln S$	
surface reaction controlled	$4\pi R t^2 k_s \rho_l^2 Z \exp[F(1)/k_B T]$	$\sim S$	

