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A Brief Introduction to Cuprates

Insulator  Prominent Mott Insulating Phases
(not described in band structure)

o Structural complexity (perovskite)

* Doping is essential

» Copper is essential (e.g. Zn alloying
destroys superconductivity)
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Discovery of Superconductivity in Fe-As

Compounds
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Temperature (K)

Phase Diagram of LaFeAs(O,F)

Kamihara et al.
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The undoped compound is now
known to be an antiferromagnetic
metal.



Fe-based Superconducting Families

LaFeAsO BaFe,As, LiFeAs FeSe
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ZrSICUAs ThCr,Si, LIMNnAS PbO
P4/nmm l4/mmm P4/nmm P4/nmm
~55K ~40K ~20K ~40K

Superconductivity is robust. Occurs across a broad range of

compositions, including replacement of As, and doping on the Fe
site.



Pressure Dependence in Fe,,, Se

S. Medvedev et al. (cond-mat, 2009).
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FeSe - The “Simplest” Fe-Superconductor

o Simple tetragonal structure, four atoms per unit cell (Hagg and
Kindstrom, Z. Phys. Chem. (1933).

 Actual material is Fe,,,Se, with extra

Fe in holes of Se lattice.

e LiFeAs is similar, but extra sites are
filled with L.
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A Word About Structure

o Large size of As3,Se? relative to Fe?* leads to tetrahedral structures
with anion contact (edge shared tetrahedra). Tendency to high
symmetry, small unit cells without structural distortion.

o Cuprates, etc. are based on corner shared units, with resulting tendency
to complex structure distortions. The interplay with properties greatly
complicates the physics.
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HHR  In summary, by proving the microscopic structural ori-
i " Hiflt gins of the shadow bands in the Bi2212 and Bi2201 fam-
j ilies of cuprate superconductors, we have finally been able
it i it to close this chapter in the rich and complex tale of the high
T’ superconductors.
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A Word About Structure
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Perovskite Tilt Modes

o Corner sharing polyhedra with even numbered rings.




Phonons and Electron-Phonon Interaction

 First principles calculations allow direct calculation of pairing
Interaction, and almost first principles calculation of T..

* Calculations show weak coupling, no superconductivity (A,~0.2).

thF(m)

* Fe/As phonons are
below 300 cm.
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» Corresponding Ni
compounds, LaNIiPO,
LaNIAsO, BaNI,As, ...
are electron-phonon
superconductors!
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Boeri, et al., PRL (2008); also Mazin, et al., PRL (2008).



LDA Electronic Structure of FeSe

 Arather ionic material — Fe?* and Se# with some hybridization, as in
an oxide =» metallic sheets of Fe2* modified by interaction of anions.

 Pauling electronegativities: Fe = 1.83; Se = 2.55; As = 2.18.
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Arsenide Electronic Structure: LaFeAsO

» LaFeAsO: Rather ionic electronic structure: O%, As*, La3*
 Bands near E¢ are derived from Fe with little As admixture

12
Metallic
10 sheets of
Fez*
8 :

Ea Ec Is at the
> ] bottom edge
o of a
Z 4 pseudogap

High N(Ep)
2 => near
magnetism
0
-6

D.J. Singh and M.H. Du, PRL 100, 237003 (2008) E (€V)



PRL 100, 237003 (2008) PHYSICAL REVIEW LETTERS

week ending
13 JUNE 2008

Density Functional Study of LaFeAsO,_,F,: A Low Carrier Density Superconductor
Near Itinerant Magnetism

D.J. Singh and M.-H. Du
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Fermi Surface of
LaFeAsO

(not spin polarized)

Low carrier density:
n.=n,=0.13/Fe

X

Band anisotropy: <v,”>/<v,>>~15 =
a modest value that is favorable for applications.



Normal Metallic State

Low carrier density semi-metal (dis-connected small Fermi surfaces).
Less anisotropic than cuprates, even YBa,Cu,0-.
High N(Ep).

 Near itinerant magnetism in general.

 Expect short coherence length relative to T..

» Expect high superfluid density.

Electron-Phonon interaction is weak (A~0.2, T.=0)



Formation of Band Structure

e« Bands from -2 eV to +2 eV are derived from Fe?* d-states.

e Fe2* has 6 d-electrons.

Tetrahedral Crystal Field Scheme:
t,, 6e
~ Does not correspond
to the calculated
electronic structure.
3d 1Oe ....................... eg 4e

Key is the short Fe-Fe bond length -
direct Fe-Fe interactions.



Coulomb Correlations

* LDA and correlated approaches give

different predictions.

e So far Hubbard bands are not seen:

strong Fe d character is seen at
Fermi edge.

e There Is however a renormalization

of ~2 in band width c.f. LDA.
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Metallic Character
Photoemission: LaFePO (D.H. Lu et al.)
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LaFeAs(O,F) Lindhard Function

* Neglecting Matrix Elements:

Re %,
M

Im /o

a)

I X I I X I
Scattering, Transport Magnetism, Superconductivity

Note the pronounced peak at the zone corner.

I.1. Mazin, D.J. Singh, M.D. Johannes and M.H. Du, PRL 101, 057003 (2008)



Spin Fluctuations and Superconductivity

One way to proceed (weak coupling):
* Calculate matrix elements V. for a set of k,k’ on the FS.
 Set-up gap equation -- diagonalize V.

| Singlet:
Berk-Schrieffer-Fay-Appel weak 12(0)%0(q)

. onn. V(q) = -
coupling theory, 1966-1980: (9) - 2(q).2(q)

In a singlet channel there is a minus sign for
spin fluctuations (repulsive), which then
favors opposite order parameters on the
electron and hole sheets =» s +/- state.

Note prior work, Aronov & Sonin (1972);
Kuroki and Arita (2001)

Does not have an obvious strongly g-
Electron doped LaFeAsO dependent interaction for nodes in a FS.

I.1. Mazin, D.J. Singh, M.D. Johannes and M.H. Du, PRL 101, 057003 (2008)



Spin Fluctuation Driven s,,. Properties

e TWo gap.

« SDW and superconductivity are driven by the same
Interaction and compete for the same electrons.

o Simplest form is nodeless, but this is not essential.
* Robust against low g scattering (Co, Ni doping)
e NO corner junction shifts (s-wave symmetry)

e Coherence factors depend on g. Reduced Hebel-Slichter
peak in NMR relaxation rate.

 Resonance peak in neutron scattering.



Small Fermi Surfaces in General

» Does superconductivity arise in general if one has small Fermi surfaces
with nesting driven spin fluctuations? — Answer seems to be no.

p-wave state (triplet): spin-fluctuation
ST pairing interaction has + sign =» Pair
+ - .
breaking for the state shown.

s-wave state (singlet): spin-fluctuation

C>—€>D | pairing interaction has — sign =»Pair
+ + breaking for the state shown.

e.g. small pockets on Na,CoO, (Johannes et al., 2004).

In such cases, look for chemistry with strong electron phonon and low
Stoner parameter, to obtain Kohn anomaly and e-p superconductivity or
maybe strange states, e.g. odd frequency.



nature Vol 456[18/25 December 2008 doi:10.1038/nature07625

LETTERS

Unconventional superconductivity in Bag ¢Ko.4FesAs,
from inelastic neutron scattering

A. D. Christianson', E. A. Goremychkin®?, R. Osborn?, S. Rosenkranz?, M. D. Lumsden', C. D. Malliakas®*,
. S. Todorov-, H. Claus?, D. Y. Chung®, M. G. Kanatzidis™* R. |. Bewley® & T. Guidi’
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Gap Structure

Fully Gapped: Andreev
reflection, ARPES penetration
depth (oxy-arsenides), tunneling.
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Gap Structure

If some compounds have a clean gap and others have nodes, does this
mean that there are two competing (different) superconducting states,
such as s+/- and something else?

S+/- Competing State
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Gap Structure

If some compounds have a clean gap and others have nodes, does this
mean that there are two competing (different) superconducting states,
such as s+/- and something else?

S+/-

Why should this
happen?




Fermi Surface Structure

Fermi surface shaded by d xz/yz character
FeSe LaFeAsO

Lobes of the electron sheets are not as nested
A. Subed as the inner parts due to matrix element



Neutron Scattering — Magnetism & Structure

LaFeAsO:

Ordered m(Fe) = 0.36 g
(other compounds so far are between 0.3 and 1 pg)

C. de la Cruz et al., Nature 453, 899 (2008) 939 — 800
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In-plane SDW structure

1 D Chains of parallel
spin Fe atoms.




Nesting, Doping and the Lindhard Function

holes electrons

@SC

q Doping Level
Could we realize disorder induced superconductivity?
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Metallic SDW State

SrFe,As, (Sebastian et al.)
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SDW state has quantum oscillations reflecting
a Fermi surface and is therefore a metal.



NMR: Connection of SDW and SC States

1/T,T shows
strong spin
fluctuations
(constant for
ordinary F.L.)

SPIN FLUCTUATIONS 1/T; T (s 1K)
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Implications for Models

 Models reduce the degrees of freedom in order to
extract and understand the important physics. They
must retain fidelity to the important aspects of the
physical system to be relevant.

e The FeSC are NOT near Mott insulators in any
normal sense — a Mott insulating state Is not
produced by doping, alloying, pressure, magnetic
field or other small or even large experimentally
realizable perturbations.

e Models “near” a Mott insulator (small parameter
changes produce a Mott state) need improvement.



Resistivity in LaFeAsO

McGuire et al. (cond-mat):

Resistivity:
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magnetic ordering and Fermi surface.
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Strong Spin Fluctuations in Normal State

* Transport data.

o Susceptibility - (T).

e Spectroscopy.

« Scattering.

e Overly magnetic in LDA.

 Precursor structural transition.
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A.S. Sefat, et al., PRL (2008).

% (10” cm’ mol ™)

Superconductivity in Metal Doped Materials

 Superconductivity requires destruction of SDW by doping.
« Remarkably, doping with Co or Ni works (c.f. cuprates).
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(a) ?

Z
Ba(Fe,Co),As,

Calculations show
that alloy behaves
very much in a rigid
band sense.

Fe-Co-Ni behave
very similarly apart
from electron count.

Mn and Cr show
strong spin dependent
hybridization
(different).

Is Iron essential?



JOURNAL OF SOLID STATE CHEMISTRY 56, 278-287 (1985)

The ThCr,SI, Structure Type

The Most Populous of All Crystal Structure Types—the Tetragonal
BaAl,; Structure

W. B. PEARSON  Pearson data-base now has 2,000+ ThCr,Si, entries

Departméms of Physics and of Chemistry, University of Waterloo,
Waterloo, Ontario, Canada, N2L 3Gl

Received April 9, 1984; in revised form August 3, 1984

The BaAl, (ThCr,Siy) 110 structure, MN,X3, is not only the most populous of all known structure
types, being adopted by some 400 phases, but is representative of a new group of metallurgically

Examples: BaZn,P,, BaFe,As,, BIN,Th,, CaAl,Ga, ,
SrCd,Ga, ...



The ThCr,SI, Structure Type

Stabilized by different types of
bonding: ionic, M-X bonding, M-M
bonding, X-X bonding, A-X --- can
tune to crossovers.

Interplay between magnetism and
bonding in Fe compounds, e.g.
collapsed phase of CaFe,As,
(Yildirim)




ThCr,Si, Structure DT,As,

v | er jmn fFefCofi ey

/ N\

Strong spin dependent  Metallic M#* sheets.  BaCu,As, has
T-As hybridization, As is anionic. M can  Cu d* with

G-type AF with high  be alloyed. As-As and

T Fe: SDW and Cu-As sp

BaCr,As, is itinerant ~ superconductivity. bonding.

metal. BaMn,As, isa  Co: Near FM

semiconductor. Ni: electron-phonon
superconductor.

Chemistry of chalcogenides may be expected to differ.



Is Iron Essential for Iron-Based

Superconductivity?
KRu,As,; KFe,As,; KCo,As,: Can we do something with the alloys?
KFeCoAs, = BaFe,As,
KFe,;C0, sAS,

KFeCoAs, (overdoped)

Virtual Crystal Ordered Cell Virtual Crystal
Coherent alloy: Look for superconductivity in KFe, ,Co,,,As, (Fe-poor)

Also, similar results, but less magnetic for KRu, ,Co,,,As,, but
significantly less magnetic (Fe-free).



Fermi Surface of Ordered KRuUCo0AsS,

Do not find SDW magnetic
order at this composition.

Will it appear as Ru
concentration 1Is reduced.

Will superconductivity
appear?

x.(a)

AT @@

Ru lowers average Stoner parameter I(q) both because it is 4d and

because of Ru d — As p hybridization.



Neutron Scattering — Structure Detalls

LaFeAsO (Tetragonal = Orth/Mono):

Table 2 | Properties of LaOFeAs at 4K

a, Refined structure parameters

Atom Site X ¥ z B (A%)

La 2e YVa YVa 0.1426(3) 0.54(6)
Fe 2f Va YVa 0.5006(12) 0.16(4)
As 2e YVa YVa 0.6499(4) 0.23(7)
0 2f Va YVa —0.0057(17) 0.69(7)

LaFeAsO, 4,F; 05 (Tetragonal):

Table 3 | Properties of LaOg 95F 0gFeAs at 10 K (first line), 35K (second

line) and 175K (third line)

a, Refined structure parameters

Atom Site X y z B (A%
La 2c Ya Ya 0.1448(3) 0.40(5)
Vs L 0.1458(3) 0.50(5)
Vs L 0.1446(3) 0.73(5)
Fe 2b Va Ya Ya 0.32(4)
Va Ya Ya 0.41(4)
Va Ya Ya 0.65(4)
As 2c Ya Ya 0.6521(4) 0.41(7)
Vs L 0.6515(4) 0.40(6)
Vs L 0.6527(4) 0.69(7)
O/F 2a Va Ya 0 0.53(6)
A L 0 0.62(6)
A L 0 0.71(6)

Z,(4K) = 1.308 A

Z,s(175K)=1.317 A

Z,(10K) = 1.323 A

Z,s(175K)=1.331 A

C. de la Cruz et al., Nature 453, 899 (2008)

Non-magnetic LDA calc.
(LaFeAsO — Tetragonal)

Z,.(LDA) = 1.159 A

A huge difference!
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Structure and Magnetism

e As height is too low by ~0.1 A in non-magnetic LSDA calculations.
e SDW Is too robust compared to experiment.

» Using GGA and including magnetism one can obtain much better As
height. In that case magnetism is extremely robust (m~2puz) contrary to
experiment.

 Discrepancy in As height persists in the paramagnetic
(superconducting) doped phases.

 There is a strong isotope effect both on T,and on Ty, (Liu et al., cond-
mat, 2008).

 \We take this as an indication of very strong non-trivial spin-
fluctuations.



Quantum Critical Points and the LDA

Density Functional Theory: LDA & GGA are widely used for first principles
calculations but have problems:

e Mott-Hubbard: Well known poor treatment of on-site Coulomb correlations.

eBased on uniform electron gas. Give mean field treatment of magnetism:
Fluctuations missing.

Resistivity exponent in Sr3Ru,0;

3 | SR . ; ; ; ; ; ;
B 2t LDA Fixed spin moment: ;
w4 . For Sr;Ru,0,
_ 74 - . predicts weak
e = N
2 £ 2 * ltinerant
e E-10} =~ ferromagnetism
16 12 + +
il N A
5 16 + +
g = B 1 12 14 48 . . . . T : . .
Fiald ¢T) 6 02 04 08 08 1 12 14 18 18
m (ug /RU)

Grigera et al., Science (2001).

LDA overestimate of ferromagnetic tendency is a signature of quantum
critical fluctuations — neglected fluctuations suppress magnetism



Some Metals Where the LSDA Overestimates
Ferromagnetism

Class 1: Ferromagnets where the LDA overestimates the magnetization.

m (LDA, pg/f.u.) m (expt., pg/f.u.)

ZrZn, 0.72 0.17
NizAl 0.71 0.23
Scyin 1.05 0.20

Class 2: Paramagnets where the LDA predicts ferromagnetism

m (LDA, pg/f.u.) m (expt., pg/f.u.)

FeAl 0.80 0.0
Ni,Ga 0.79 0.0
Sr,Ru,0, 0.9 0.0
Na,CoO,  0.50 0.0

Class 3: Paramagnets where the LDA overestimates the susceptibility.

v (LDA, 104 emu/mol) A (expt., 10 emu/mol)
Pd 11.6 6.8



Properties of the Over-Doped Side: TIFe,Se,
Haggstrom, 1986 First Principles Results (GGA):

 Electronic structure is very similar to FeSC,
but with higher electron count (0.5 e/Fe).

o Strong instability against nearest neighbor
AFM (78 meV/Fe) and weaker instability
against FM (44 meV/Fe). No instability for
SDW type chain order = itinerant n.n. AFM

W N

Antiferromagnetic
with T ~ 450 K.
Unknown order.

]
¢y
&

Non spin polarized Fermi surface



Competing Magnetic States

Competition between different magnetic states provides phase
space for fluctuations and works against ordering.

SDW - c(2x2) N.N (1x1) (2x1)
o000 00
eceo0 o
® o ' ®

000 0000 0 O

LaFeAsO TIFe,Se, Fe, . Te




Possible Electron Doped Phase Diagram

T

Metal with strong
spin fluctuations —
competing magnetic

Iltinerant AFM

orders. Metal (n.n.
ordering)
PG? No competition
fa e ' from SDW
Suppressed
SDW, huperconductor\\
0 Loss of 05

Doping  nesting



Hund’s Coupling

e Hund’s coupling in 3d ions is strong (Stoner 1~0.8 eV)

 Spin-fluctuations are then expected to couple to electronic states in the
d-band going up to high energy (i.e. the d-band width) — may be
observable in spectroscopy. Drude weight seems reduced in optics.

Cr metal: Machida et al., JPSJ (1984).
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Fig. 3. The temperature dzpendent reflectivity of chromium normalized to T=400 K.
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Comparison with Cuprates

Cuprates Fe-As
Magnetic & Yes, magnetic phase Yes. Magnetic phase is metallic.
superconducting Insulating above & below | Above T, is is similar to the metal
phases Ty, (Mott insulator) In the superconducting phase.

Electronic structure | Moderate N(Eg), large FS | High N(Eg), small disconnected FS
at least for optimal doped

Doping Essential. Destruction of SDW is enough.
Magnetic character | Local moment Strong coupled, apparently
Itinerant.
Correlations Strong. Mott-Hubbard Possibly substantial but different
type (e.g. p.e. satellites) | e.g. spin fluctuations. Not Mott-
Hubbard type.
Superconductivity | d-wave. Nodes. One Nodeless (s +/- ?). Two band. Less

band. Highly anisotropic | anisotropic (material dependent).

Structure Oxides, corner shared Simpler — tetragonal /
octahedra -- complex orthorhombic, small unit cells.




