# **Flux Method for Preparing Crystals**

### Athena S. Sefat

Division of Materials Sciences and Engineering







| 1 1.0079  | 1                |            | RELATI        | VE ATOMIC N   | tass (h       | M M        | tal 🚺                         | Semimetal | Norme        | elal                       |           |                       |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 2 4.002               |
|-----------|------------------|------------|---------------|---------------|---------------|------------|-------------------------------|-----------|--------------|----------------------------|-----------|-----------------------|--------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|
| H         | -                | GRO        | NIP IUPAC     |               | ROUPCAS       | I AS       | ali metal                     |           | Is Chalce    | igens elemen               |           |                       |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | He                    |
| 3 6.941   | 2 TA<br>4 9.0122 | ATOMICS    | UMBER         | 10.811        |               |            | aline earth m                 |           |              | ons element                | 1         | 13 IIIA<br>5 10.811   | 6 12.011     |            | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17 VIIA      | HELUM<br>10 20 18     |
| Li        | Be               |            | YMBOL -       | B             |               | /          | Lanhanide                     |           | Is Noble gas |                            |           | B                     | C            | N          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F            | Ne                    |
| LA        | DE               | 1          | T MIROL       | D             |               | _          | Actinide                      |           | - GOS        | (25 °C; 101 )<br>Fe - sold | (P2)      | D                     | CANBON       | NTROGEN    | OKYGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FLUORINE     | NEON                  |
|           | 12 24.305        |            | / •           | 1             |               | 1          |                               |           | - liquid     | To - synthe                | ic .      | 13 26.982             | 14 28.085    | 15 30.974  | and the second sec | 17 35.453    |                       |
| Na        | Mg               | 1          | H.E           | MENTNAME      |               |            |                               |           |              |                            |           |                       | Si           | P          | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CI           | Ar                    |
| BOOIN     | IVIS             | 3 100      | A IVA         | s VR          | 6 VIB         | 7 118      |                               | VIIIB -   | 10           | 11 18                      | 12 18     | ALUMINUM              | BLICON       | PHOSPHORUS | a strations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHLORNE      | ARCON                 |
| 9 39.098  | 20 40.078        | 21 44.996  | 22 47.867     | 23 50.942     |               |            | 26 55.845                     | 27 58.933 |              |                            |           | 31 69.723             | 32 72.64     |            | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35 79.904    | 36 83.00              |
| K         | Ca               | Sc         | Ti            | V             | Cr            | Mn         | Fe                            | Co        | Ni           | Cu                         | Zn        | Ga                    | Ge           | As         | Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Br           | Kr                    |
| NURBATON  | CALCIUM          | SCANDIUM   | TITANUM       | VANADIUM      | CHROMUM       | MANGANESE  | RON                           | COBALT    | NOREL        | COPPER                     | ZIND      | GALLIUM               | GERMANUM     | ARSENC     | SELENUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BROMINE      | KORVIPTON.            |
| 37 85.468 | 38 87.62         | 39 88.906  | 40 91.224     | 41 92.906     | 42 95.94      | 43 (98)    | 44 101.07                     | 45 102.91 | 46 106.42    | 47 107.67                  | 48 112.41 | 49 114.82             | 50 118.71    | 51 121.76  | 52 127.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53 126.90    | 54 131.29             |
| Rb        | Sr               | Y          | Zr            | Nb            | Mo            | Te         | Ru                            | Rh        | Pd           | Ag                         | Cd        | In                    | Sn           | Sb         | Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I            | Xe                    |
| NUDDUN    | STRONTIUM        | YTTRUM     | ZIRCONUM      | HOBILM        | NOUTECHUN     | TECHNETIUM |                               | RHODIUM   | PALLADIUM    | SLVER                      | CADMUM    | INDIUM                | TIN          | ANTIMONY   | TELLURIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IODINE       | XENON                 |
| 55 132.91 | 56 137.33        | 57-71      | 221           |               | 74 183.84     |            | 76 190.23                     | 77 192.22 |              | 79 196.97                  |           | 1000                  | 82 207.2     |            | 84 (209)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85 (210)     |                       |
| Cs        | Ba               | La-Lu      | Hf            | Ta            | W             | Re         | Os                            | Ir        | Pt           | Au                         | Hg        | TI                    | Pb           | Bi         | Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | At           | Rn                    |
| CAESIUM   | BARIUM           | Lanthanide | HAPPICA       | TANTALUM      | TUNGSTEN      | PHENRUM    | OSMUM                         | ROUM      | PLATINUM     | GOLD                       | MERCURY   | THALLION              | LEAD         | BISMUTH    | POLONUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ASTATINE     | RADON                 |
| 10.0      | 88 (220)         | 89-103     | 104 (261)     |               | 106 (200)     |            | 108 (277)                     | 109 (268) | Sec.         |                            |           |                       | 114 (289)    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                       |
| Fr        | Ra               | Ac-Lr      | IRI           | IDb           | Sg            | IBh        | IHIS                          | Mit       | Uum          | Uww                        | Uub       |                       | Uwq          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                       |
| TRANCIAM  | RADIUM           | Actinide   | RUTHERFORDERS | DUBNUM        | SEABORCRUM    | BOHRUM     | HASSIUM                       | MEITNERUM | UNUNNILIUM   | UNUNUNUM                   | UNUNBIUM  |                       | monon        | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 30.                   |
|           |                  |            | LANTHAN       | IDE           |               |            |                               |           |              |                            |           |                       |              |            | Copyright D 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 98-2003 EniG | leridad ipit h        |
|           |                  |            | 57 138.91     | 58 140.12     | 59 140.91     | 60 144.24  | 61 (145)                      | 62 150.36 | 63 151.96    | 64 157.25                  | 65 158.93 | 66 162.50             | 67 164.93    | 68 167.26  | 69 158.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 173.04    | 71 174.97             |
|           |                  |            | La            | Ce            | Pr            | Nd         | IPm                           | Sm        | Eu           | Gd                         | Tb        | Dv                    | Ho           | Er         | Tm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yb           | Lu                    |
|           |                  |            | LANTHANUM     | CERUM         | PRASECOVINIUM | NECOMILUM  | PROMETHUM                     | SAMARUM   | EUROPIUM     | GADOLINUN                  | TERBUM    | OVERROSIUN            | HOLMUM       | EREUM      | THULIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YTTEREUM     | LUTETIUM              |
|           |                  |            | ACTINIDE      |               | lar           |            |                               |           |              | Ar                         | -         |                       | -            | I van      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 1000                  |
|           |                  |            | 89 (227)      | 1000001010101 | 91 231.04     |            | ALC: NOT THE REAL PROPERTY OF |           | 10 C         |                            | 1907      | and the second second | 1000         | 100 (257)  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000         | and the second second |
|           |                  |            | Ac            | Th            | Pa            | U          | Np                            | Pu        | A.m          | Cm                         | IBlk      | Cf                    | Es           | IFm        | MId                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No           | ILr                   |
|           |                  |            | ACTINUM       | THORNAL       | PROTACTINIUM  | CHRANKIM   | NEPTUNIUM                     | PLUTONIUM | AMERICAM     | CURIUM                     | BERKEUUM. | CALIFORNIUM           | STRUCTURE IN | FERMIN     | MENDELEVEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NOBELIUM     | LAWRENCES             |



# □ Why materials synthesis?

If you can make samples, then you can pursue the science that appeals to you: Magnetic materials, metals, insulators, superconductors, etc.

If you know how to cook, you can create what you want.





Pizza

Seafood Stew



# Definition of crystal?



In a crystal, the constituent atoms are arranged in an orderly repeating pattern extending in all three spatial dimensions.

| SI      | Spatial extent of the ordered regions (crystallites): |                 |           |  |  |  |  |  |  |  |  |  |  |
|---------|-------------------------------------------------------|-----------------|-----------|--|--|--|--|--|--|--|--|--|--|
| Crystal | poly-/micro-crystalline                               | nanocrystalline | amorphous |  |  |  |  |  |  |  |  |  |  |
| ~ mm    | ~ μm                                                  | ~ nm            | < nm      |  |  |  |  |  |  |  |  |  |  |



# □ Why single crystals?

• Aesthetics – gemstones



Ruby  $Al_2O_3$ with  $\sim 1\%$  Cr





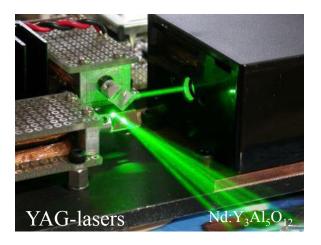
С

Diamond

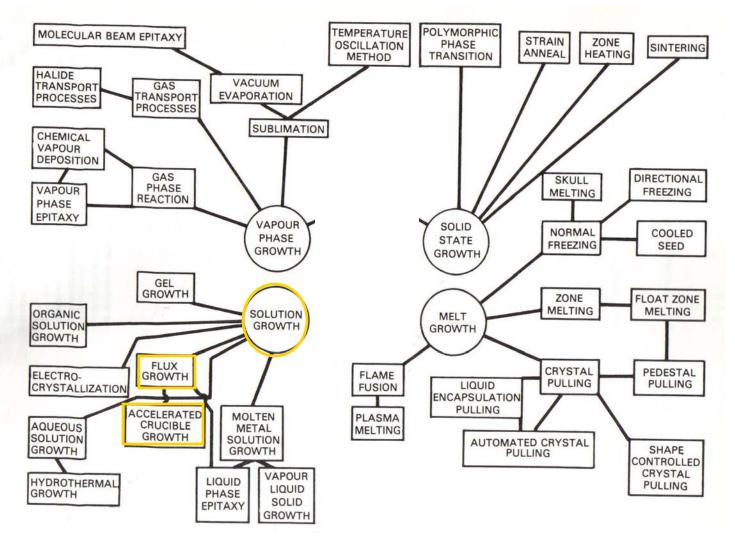


Sapphire



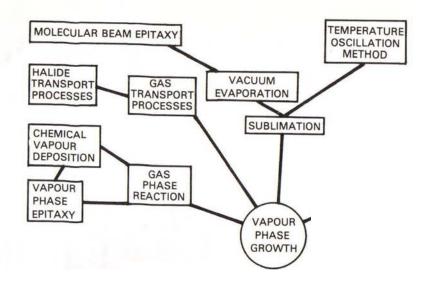

Emerald  $Be_3Al_2(SiO_3)_6$ With Cr or V dopants




# □ Why single crystals?

- Find intrinsic properties (no grain boundaries, anisotropic)
- Application in devices





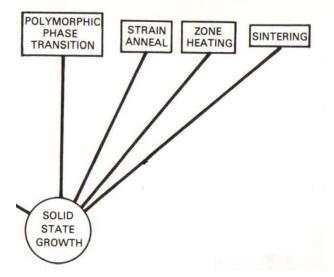





#### B. R. Pamplin, Crystal Growth, Pergamonpress (1980).






#### Growth from gas phase – 'precipitation' from gas phase

- solid  $\rightarrow$  gas  $\rightarrow$  xtal
- Chemical vapor transport need a transport agent
- Pulsed laser deposition need a substrate or seed

#### Issues:

- Induce a phase transition homogeneous gas phase to solid + unsaturated gas
- Control conditions for supersaturation, usually by control of temperature gradients

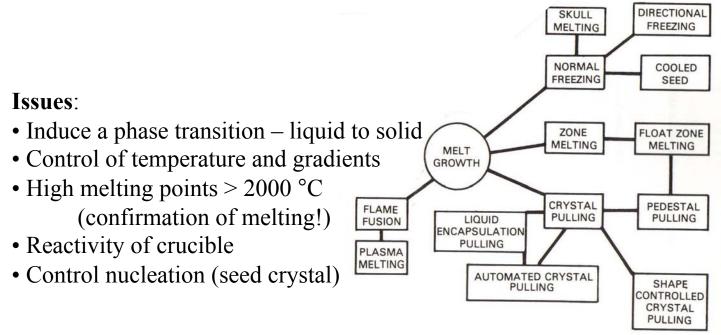




#### Growth from a mixture of solids (no melting)

• kinetic and thermodynamic factors are important

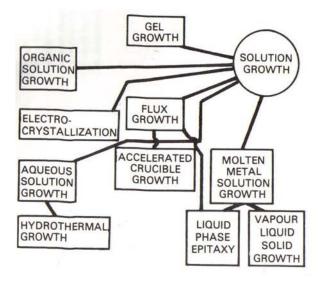
#### **Issues**:


- Crystals are micron size
- Phase segregation, grain boundaries



#### Growth from the liquid phase

• solid  $\rightarrow$  liquid  $\rightarrow$  solid


• Variations are Bridgman, Czochralski (pulling), Kyropoulos (top seeding), Verneuil (flame fusion), tri-arc, skull melting, image float-zone



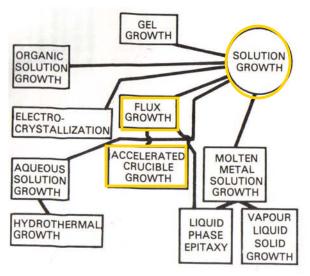


Growth from solution – precipitation from supersaturated solution

- Aqueous & organic solvents
- Inorganic solvent (flux, high T)
- Hydrothermal (high P & T)



#### Issues:


- induce a phase transition homogeneous solution to solid + unsaturated solution
- control conditions for supersaturation– concentration (evaporation of solvent), temperature (solubility or saturation is a function of temperature)
- reactivity of container (crucible)
- inclusion of solvent in crystals



# □ Why solution growth?

Advantages:

- Grow congruently and incongruently melting materials
- Need relatively simple equipment
- Has short growth-time scales
- Need small amounts of materials



Disadvantages:

- Not too large a crystal (mm to cm)



#### e.g. Rock candy



• Find the right solvent and dissolve the starting materials

• Crystallize with time and temperature

#### Important: Solvent should have reasonable solubility & Diffusivity





#### e.g. Rock candy



• Find the right solvent and dissolve the starting materials

• Crystallize with time and temperature

- Flux Growth is solution growth at high temperature
- Flux (melt; solvent) can be metals (Ni, Fe, etc.), oxides  $(B_2O_3, Bi_2O_3)$ , hydroxides (KOH, NaOH), salts (BaO, PbO, PbF<sub>2</sub>), eutectic binaries

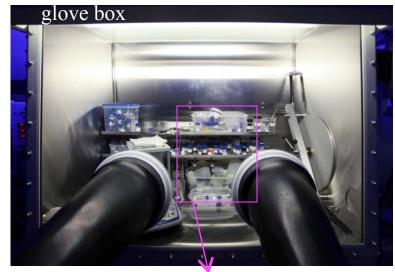


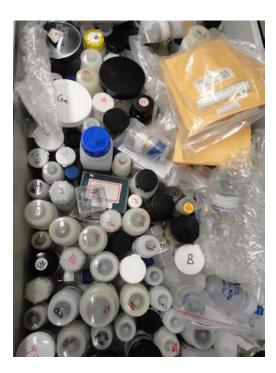
#### e.g. Rock candy



• Find the right solvent and dissolve the starting materials

• Crystallize with time and temperature


#### Key characteristics for fluxes


- Have low melting temperature
- Be easily separated from the products
- Not form stable compounds with the reactants
- Have a large difference between boiling & melting temp.



- Elements
- Cutting tools

















- Crucibles
- Tubes (reaction under ambient conditions not possible)

| -    |                            |                |                           |
|------|----------------------------|----------------|---------------------------|
|      |                            | $T_{max}$ (°C) | T <sub>melting</sub> (°C) |
|      | borosilicate glass (Pyrex) | 515            | 820                       |
|      | gold                       | 1013           | 1064                      |
| ed ' | silica (quartz)            | 1200           | 1853                      |
|      | platinum                   | 1720           | 1770                      |
|      | alumina $(Al_2O_3)$        | 1900           | 2072                      |
|      | zirconia $(ZrO_2)$         | 2000           | 2700                      |
| 1    | magnesia (MgO)             | 2400           | 2852                      |
|      | tantalum                   | 1400           | 3017                      |
|      |                            |                |                           |

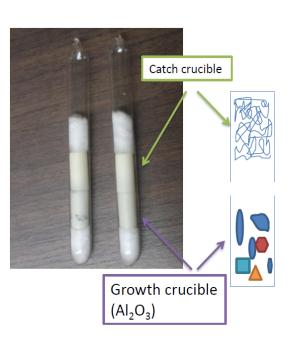




- Crucibles
- Tubes (reaction under ambient conditions not possible)






| Elements                  | Container & tube choices                                     |
|---------------------------|--------------------------------------------------------------|
| Alkali & alkaline-earth n | netals Ta, steel                                             |
| Al, Ga                    | Al <sub>2</sub> O <sub>3</sub> , MgO, BeO                    |
| Mg                        | MgO, Ta, graphite or steel                                   |
| Cu, Ag, Au                | graphite, MgO, Al <sub>2</sub> O <sub>3</sub> , Ta           |
| Fe, Co, Ni                | $Al_2O_3$ , $ZrO_2$                                          |
| Zn, Cd, Hg                | $Al_2O_3$                                                    |
| In                        | $Al_2O_3$ , Ta                                               |
| Rare-earth metals         | Ta, Mo, W, BeO                                               |
| Bi, Sn                    | Al <sub>2</sub> O <sub>3</sub> , SiO <sub>2</sub> , graphite |
| Sb                        | $SiO_2$ , graphite                                           |



- Arc melt
- Glass sealing station









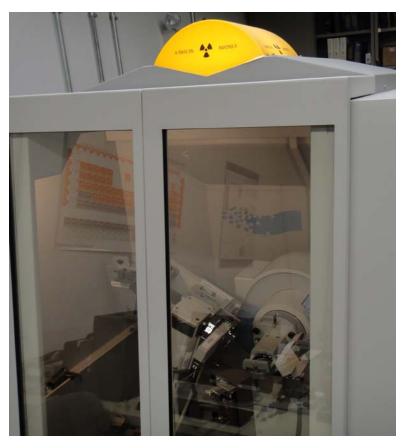
#### - Furnaces





SiC heating elements ( $T_{max}$ = 1500 °C) MoSi<sub>2</sub> heating elements ( $T_{max}$  = 1700 °C)




## - Centrifuges



- Chemical etchers (e.g. for Al, use NaOH; for Ga or In, use HCl)
- Mechanical removal tools



- Energy dispersive spectrometer
- X-ray diffractometer (powder or single crystal)





### (1) Review basic literature on flux growth

#### Growth of single crystals from molten metal fluxes

Fisk, Z. and Remeika, JP

Gschneidner Jr, KA and Eyring, L. (eds) (1989) Handbook on the Physics and Chemistry of Rare Earths 12, p. 53. Elsevier, Amsterdam

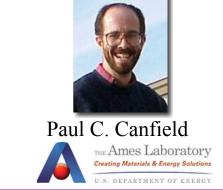
PHILOSOPHICAL MAGAZINE B, 1992, VOL. 65, NO. 6, 1117-1123

#### Growth of single crystals from metallic fluxes

By P. C. CANFIELD and Z. FISK

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

#### The Metal Flux: A Preparative Tool for the Exploration of Intermetallic Compounds

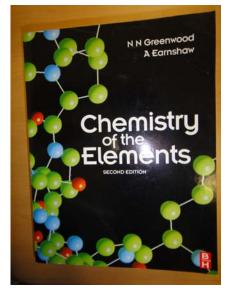

Mercouri G. Kanatzidis,\* Rainer Pöttgen,\* and Wolfgang Jeitschko\*

Introduction to Techniques for Crystal Growth or In the Age of Nano, Why Bother to Grow Crystals?

J.E. Greedan, BIMR McMaster University



The Design, Discovery, Growth and Physical Properties of Novel Intermetallic Compounds



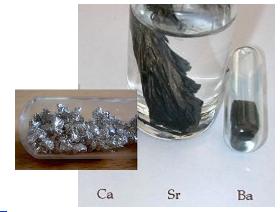

<sup>22</sup> Managed by UT-Battelle for the U.S. Department of Energy

✤ (2) Learn about the elements

e.g. reactivity, toxicity, general properties

Atmosphere control may be crucial – i.e. samples can't be made in air!




'Wikipedia' descriptions...

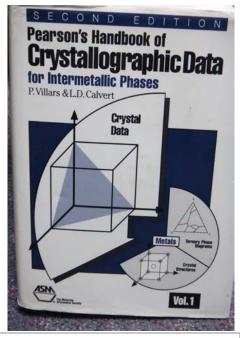
La: "forms a hydrated oxide with moisture in air
Na: "burns with a yellow flame; reacts violently with water, oxidizes in air"
K: "oxidizes rapidly in air; very reactive with water; burns in contact with skin"
Ba: "reacts exothermically with oxygen, & violently with water"
P: "high reactivity; widely used in explosives, nerve agents, friction matches, fireworks"

**As**: "poisonous"; "frequently used for murder..."

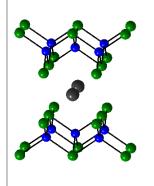


(2) Learn about the elements




|   | 19 39.098 | 20 40.078 | 1 44.956   | 22 47.867 | 23 50.942 | 24 51.996  | 25 54.938  | 26 55.845 | 27 58.933 | 28 58.693 | 29 63.546 | 30 |
|---|-----------|-----------|------------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|----|
|   | K         | Ca        | Sc         | Ti        | V         | Cr         | Mn         | Fe        | Co        | Ni        | Cu        |    |
|   | POTASSIUM | CALCIUM   | SCANDIUM   | TITANIUM  | VANADIUM  | CHROMIUM   | MANGANESE  | IRON      | COBALT    | NICKEL    | COPPER    |    |
|   | 37 85.468 | 38 87.62  | 39 88.906  | 40 91.224 | 41 92.906 | 42 95.94   | 43 (98)    | 44 101.07 | 45 102.91 | 46 106.42 | 47 107.87 | 48 |
| 1 | Rb        | Sr        | Y          | Zr        | Nb        | Mo         | Tc         | Ru        | Rh        | Pd        | Ag        | 1  |
|   | RUBIDIUM  | STRONTIUM | YTTRIUM    | ZIRCONIUM | NIOBIUM   | MOLYBDENUM | TECHNETIUM | RUTHENIUM | RHODIUM   | PALLADIUM | SILVER    | C  |
|   | 55 132.91 | 56 137.33 | 57-71      | 72 178.49 | 73 180.95 | 74 183.84  | 75 186.21  | 76 190.23 | 77 192.22 | 78 195.08 | 79 196.97 | 80 |
| 1 | Cs        | Ba        | La-Lu      | Hf        | Ta        | W          | Re         | Os        | Ir        | Pt        | Au        | ]  |
|   | CAESIUM   | BARIUM    | Lanthanide | HAFNIUM   | TANTALUM  | TUNGSTEN   | RHENIUM    | OSMIUM    | IRIDIUM   | PLATINUM  | GOLD      | M  |

|    | IE (kJ/mol) | metal radius (pm) | $T_{melt}(^{\circ}C)$ | $T_{boil}(^{\circ}C)$ | $D_{20^{\circ}C}(g/cm^3)$ |
|----|-------------|-------------------|-----------------------|-----------------------|---------------------------|
| Ca | 590         | 197               | 842                   | 1494                  | 1.55                      |
| Sr | 550         | 215               | 769                   | 1382                  | 2.63                      |
| Ba | 503         | 222               | 729                   | 1805                  | 3.59                      |



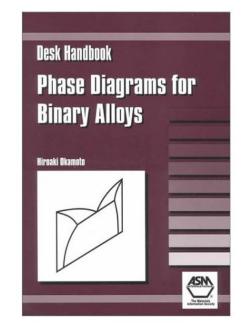

✤ (3) Find structure data

Same structure-types may give similar physical properties!



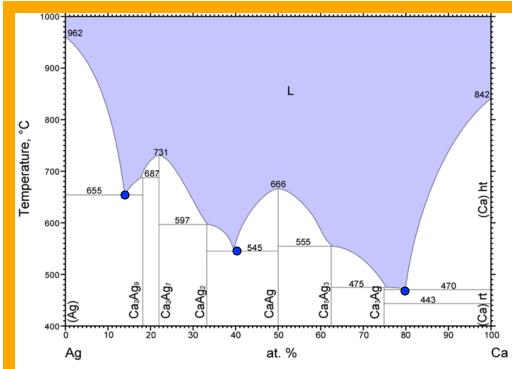
e.g. Fe-based superconductor ( $BaFe_{1.84}Co_{0.16}As_2$ ) has ThCr<sub>2</sub>Si<sub>2</sub> structure. Explore other Fe-based compounds with this structure:




| $EuFe_2As_2$ | $KFe_2As_2$                       | $BaFe_2As_2$                       | $SrFe_2As_2$                      | $DyFe_2B_2$  | $HoFe_2B_2$  | $TmFe_2B_2$  | BaFe <sub>2</sub> P <sub>2</sub>  |
|--------------|-----------------------------------|------------------------------------|-----------------------------------|--------------|--------------|--------------|-----------------------------------|
| $CaFe_2P_2$  | $CeFe_2Ge_2$                      | $ErFe_2B_2$                        | $LuFe_2B_2$                       | $YFe_2B_2$   | $CeFe_2P_2$  | $GdFe_2B_2$  | TbFe <sub>2</sub> B <sub>2</sub>  |
| $CeFe_2Si_2$ | $DyFe_2Si_2$                      | $\mathrm{ErFe}_{2}\mathrm{Ge}_{2}$ | $EuFe_2P_2$                       | $DyFe_2Ge_2$ | $ErFe_2Si_2$ | $EuFe_2Si_2$ | LaFe <sub>2</sub> Ge <sub>2</sub> |
| $LaFe_2P_2$  | SmFe <sub>2</sub> Ge <sub>2</sub> | $UFe_2Ge_2$                        | LaFe <sub>2</sub> Si <sub>2</sub> | $NdFe_2Si_2$ | $TIFe_2Se_2$ | $ThFe_2Si_2$ | YFe <sub>2</sub> Si <sub>2</sub>  |
| $UFe_2P_2$   | $GdFe_2Ge_2$                      | $NdFe_2Ge_2$                       | $TbFe_2Ge_2$                      | $YbFe_2Ge_2$ | $LuFe_2Si_2$ | $PrFe_2Si_2$ | $SmFe_2Si_2$                      |
| $TmFe_2Si_2$ | $YbFe_2Si_2$                      | $\Pr{Fe_2Ge_2}$                    | $ThFe_2Ge_2$                      | $HoFe_2Si_2$ | $SrFe_2P_2$  | $TbFe_2Si_2$ | $TIFe_2S_2$                       |
| $UFe_2Si_2$  | ZrFe <sub>2</sub> Si <sub>2</sub> |                                    |                                   |              |              |              |                                   |

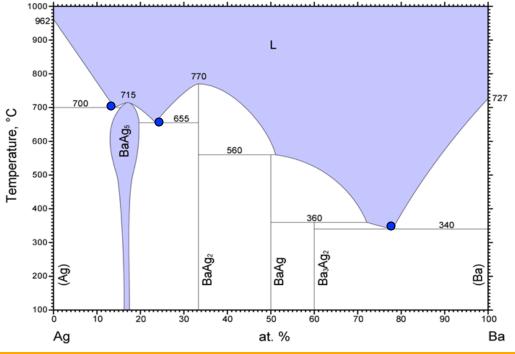


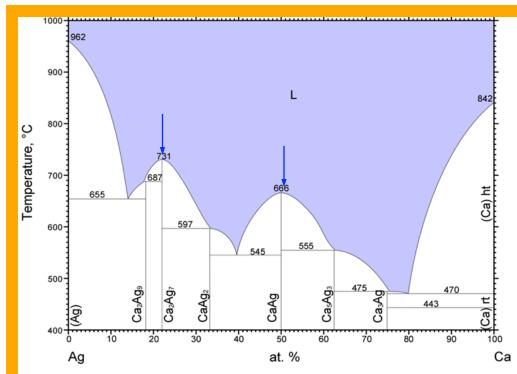
✤ (4) Find the existing phase diagrams


- Binary diagrams are a good start (may be your only option)

- Ternary, quaternary growths generally involve educated guesses.



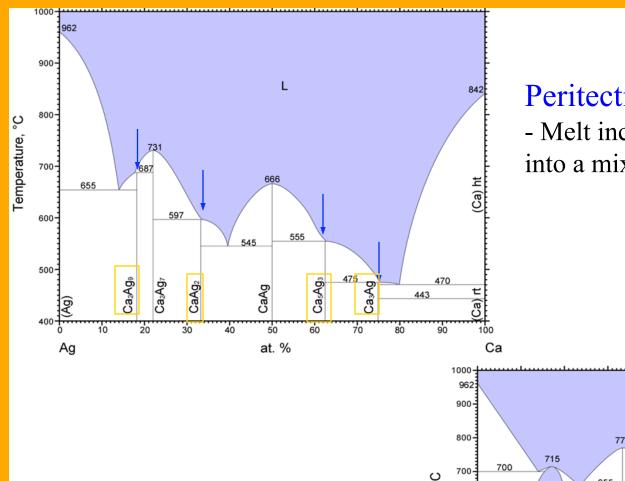

| Let's review a few binary phase diagrams |           |           |           |           |           |           |            |           |           |           |           |    |  |
|------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|----|--|
|                                          | 19 39.098 | 20 40.078 | 1 44.956  | 22 47.867 | 23 50.942 | 24 51.996 | 25 54.938  | 26 55.845 | 27 58.933 | 28 58.693 | 29 63.546 | 30 |  |
|                                          | K         | Ca        | Sc        | Ti        | V         | Cr        | Mn         | Fe        | Co        | Ni        | Cu        |    |  |
| Ca-Ag                                    | POTASSIUM | CALCIUM   | SCANDIUM  | TITANIUM  | VANADIUM  | CHROMIUM  | MANGANESE  | IRON      | COBALT    | NICKEL    | COPPER    |    |  |
|                                          | 37 85.468 | 38 87.62  | 39 88.906 | 40 91.224 | 41 92.906 | 42 95.94  | 43 (98)    | 44 101.07 | 45 102.91 | 46 106.42 | 47 107.87 | 48 |  |
| Ba-Ag                                    | Rb        | Sr        | Y         | Zr        | Nb        | Mo        | Tc         | Ru        | Rh        | Pd        | Ag        |    |  |
| 8                                        | RUBIDIUM  | CTRONTIN  |           | ZIRCONIUM |           |           | TECHNETIUM |           |           | PALLADIUM | SILVER    | ¢  |  |
|                                          | 55 132.91 | 56 137.33 | 57-71     | 72 178.49 | 73 180.95 | 74 183.84 | 75 186.21  | 76 190.23 | 77 192.22 | 78 195.08 | 79 196.97 | 80 |  |
|                                          | Cs        | Da        | La-Lu     | Hf        | Ta        | W         | Re         | Os        | Ir        | Pt        | Au        |    |  |
| 1                                        | CAESIUM   | BARIUM    | anthanide | HAFNIUM   | TANTALUM  | TUNGSTEN  | RHENIUM    | OSMIUM    | IRIDIUM   | PLATINUM  | GOLD      | N  |  |
| detour                                   |           |           |           |           |           |           |            |           |           |           |           |    |  |





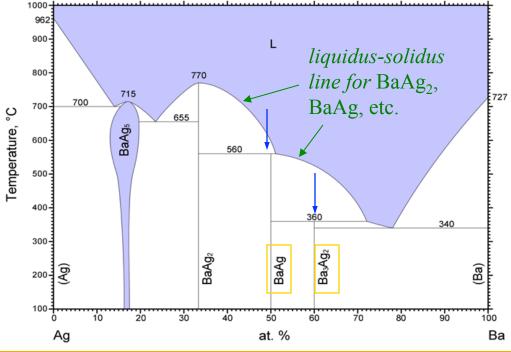

### Eutectic point:

- Minima in liquid region
- Easily accessible liquid region






#### Congruent reaction:


Transformation from a homogeneous liquid to a homogenous solid





#### Peritectic reaction:

- Melt incongruently, i.e. decompose into a mixed solid and a liquid phase

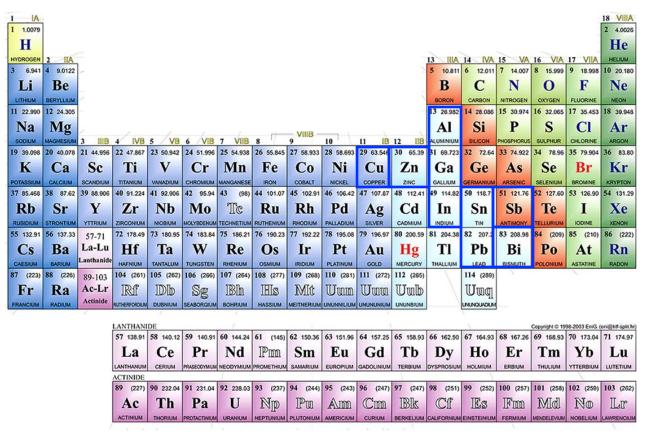


## (5) Find a good metallic flux for crystal growth

A good flux (a) has a low melting temperature,

(b) has a good solubility for the elements,

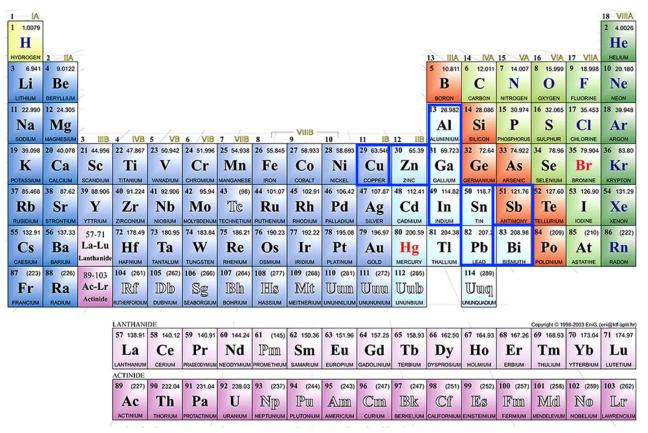
(c) does not enter crystal as inclusions, &


(d) does not create competing phases, etc. 18 VIIIA 1 IA 1 1.0079 2 4.0026 H He HYDROGEN IIIA 14 IVA 15 VA 16 VIA 17 VIIA HELIUM 3 6.941 4 9.0122 10.811 6 12.011 7 14.007 8 15.999 9 18.998 10 20.180 Be B 0 F Ne Li C N ERVILIN ITROGE CARBO OXYGEN LUORIN NEON ITHE 12 24.305 11 22.990 14 28.086 3 26.982 15 30.974 6 32.065 17 35.453 18 39.94 Mg Si P Na Al S CI Ar 9 VIIIB VB 6 VIB 7 VIIB 8 10 IB 12 SODILIN IIB 4 IVB 5 11 118 AL UMINIUM SILICON HOSPHORUS SULPHUR CHLORINE ARGON 24 51.996 25 54.938 26 55.845 27 58.933 28 58.693 19 39.098 20 40.078 21 44.956 22 47.867 23 50.942 29 63.546 30 65.39 31 69.723 32 72.64 33 74.922 34 78.9 35 79.904 36 83.80 Ca Ti K Sc Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr COPPER CALCIU SCANDIU TITANIUN CHROMIU ANGANES IRON COBALT NICKEL ZINC GALLIUM BROMINE KRYPTON 37 85.468 88 87.62 39 88.906 40 91.224 41 92.906 42 95.94 43 (98) 44 101.07 45 102.91 46 106.42 47 107.87 48 112.41 49 114.82 50 118.7 51 121.7 2 127.60 53 126.90 54 131.29 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Cd Sn Sb Te Xe Ag In I YTTRIUM RCONIUM NIOBIUM OLYBDENUM TECHNETIU RUTHENIUM RHODIUM PALLADIUM SILVER CADMIUM INDIUM TIN IODINE XENON RONTIL NTIMON 55 132.91 56 137.33 72 178.49 73 180.95 74 183.84 75 186.21 76 190.23 77 192.22 78 195.08 79 196.97 80 200.59 81 204.38 82 207 83 208.9 (209) 85 (210) 86 (222) 57-71 Ba La-Lu Ta W Re Pt Hg TI Pb Bi Po Cs Hf Os Au Rn Ir At Lanthanid MERCURY OSMIUM IRIDIUM PLATINUM GOLD THALLIUN 114 (289) 87 (223) 38 (226) 89-103 104 (261) 105 (262) 106 (266) 107 (264) 108 (277) 109 (268) 110 (281) 111 (272) 112 (285) Uuq Ra Ac-Lr Rſ Db Sg IHIS Uum Winn Wwb Fr IBh MIt Actinide MUNCHUCKUM HASSIUM MEITNERIU

| LAN  | NTHANIDE Copyright © 1998-2003 EniG. (cri@ktf-Split.hr) |           |              |           |            |           |           |            |           |             |             |           |             |           |            |
|------|---------------------------------------------------------|-----------|--------------|-----------|------------|-----------|-----------|------------|-----------|-------------|-------------|-----------|-------------|-----------|------------|
| 57   | 138.91                                                  | 58 140.12 | 59 140.91    | 60 144.24 | 61 (145)   | 62 150.36 | 63 151.96 | 64 157.25  | 65 158.93 | 66 162.50   | 67 164.93   | 68 167.26 | 69 168.93   | 70 173.04 | 71 174.97  |
| I    | a                                                       | Ce        | Pr           | Nd        | IPm        | Sm        | Eu        | Gd         | Tb        | Dy          | Ho          | Er        | Tm          | Yb        | Lu         |
| LANT | HANUM                                                   | CERIUM    | PRASECODYMUM | NEODYMIUM | PROMETHIUM | SAMARIUM  | EUROPIUM  | GADOLINIUM | TERBIUM   | DYSPROSIUM  | HOLMIUM     | ERBIUM    | THULIUM     | YTTERBIUM | LUTETIUM   |
| ACT  | INIDE                                                   |           |              |           |            |           |           |            | 1         |             |             |           |             |           |            |
| 89   | (227)                                                   | 90 232.04 | 91 231.04    | 92 238.03 | 93 (237)   | 94 (244)  | 95 (243)  | 96 (247)   | 97 (247)  | 98 (251)    | 99 (252)    | 100 (257) | 101 (258)   | 102 (259) | 103 (262)  |
| A    | Ac                                                      | Th        | Pa           | U         | Np         | Pu        | Am        | Cm         | IBk       | Cf          | Es          | Fm        | Md          | No        | Ilr        |
| ACT  | TINIUM                                                  | THORIUM   | PROTACTINIUM | URANIUM   | NEPTUNIUM  | PLUTONIUM | AMERICIUM | CURIUM     | BERKELIUM | CALIFORNIUM | EINSTEINIUM | FERMIUM   | MENDELEVIUM | NOBELIUM  | LAWRENCIUM |



- Al  $T_{melt} = 660$  °C
  - attacks silica
  - spin off Al in silica tubes or use NaOH

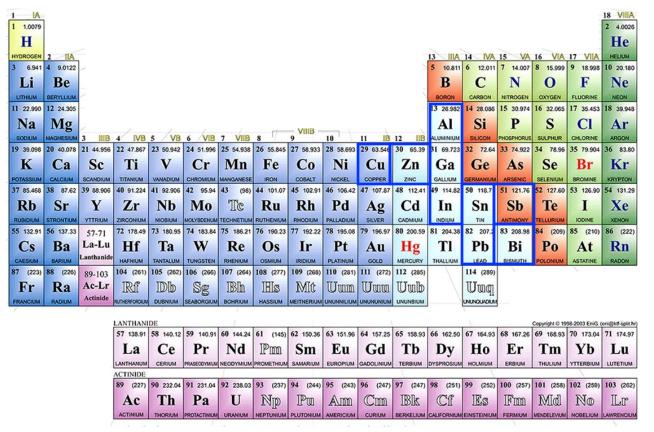

e.g. RB<sub>4</sub>, YbAlB<sub>4</sub>, RB<sub>6</sub>, RBe<sub>13</sub>, RAl<sub>3</sub>, TiB<sub>2</sub>, CeSi<sub>2-x</sub>





- **Ga**  $T_{melt} = 30 \ ^{\circ}C$ 
  - tends to wet surfaces of grown crystal
  - forms compounds with rare-earths

e.g. RSb,  $R_2Pt_4Ga_8$ 

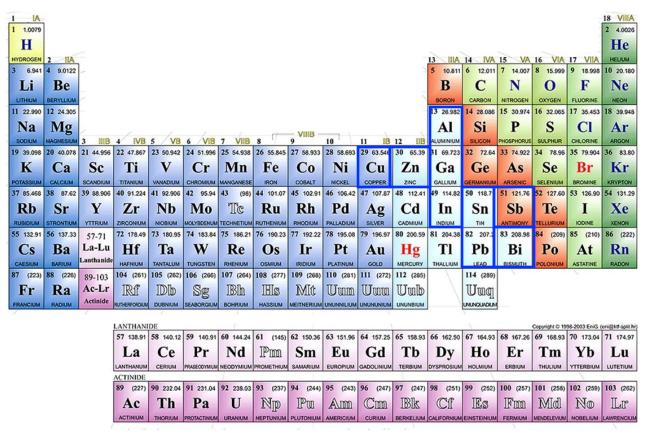





In • 
$$T_{melt} = 157$$
 °C

- Proven to be a good flux for ThCr<sub>2</sub>Si<sub>2</sub>-types
- $T_C = 3.4 \text{ K}$

e.g. CeCu<sub>2</sub>Ge<sub>2</sub>, CeNi<sub>2</sub>Ge<sub>2</sub>, TyCu<sub>2</sub>Si<sub>2</sub>

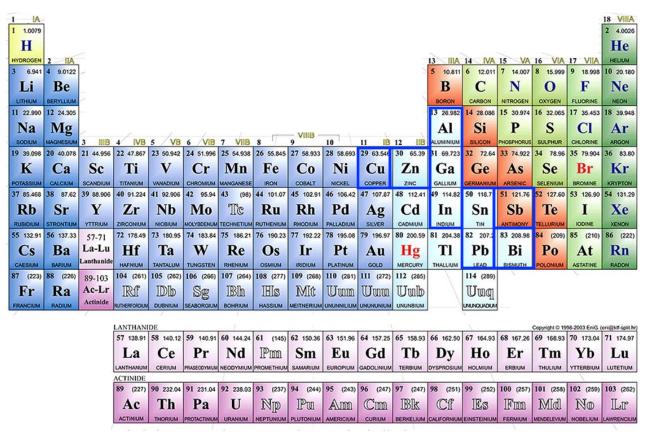





**Sn; Pb** • 
$$T_{melt} = 232 \text{ °C}; 327 \text{ °C}$$

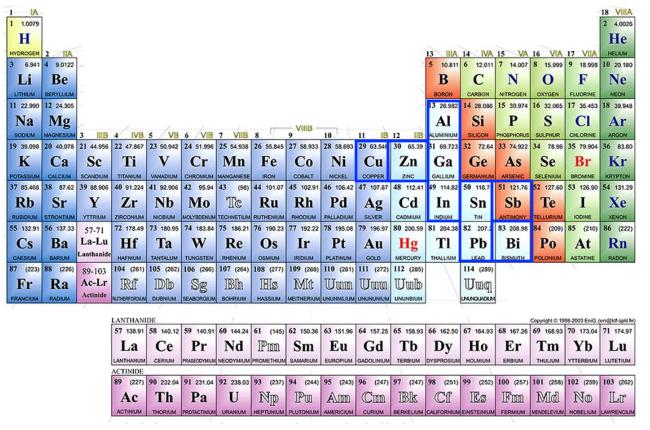
- form *RPb*<sub>3</sub>, *RSn*<sub>3</sub> phases
- $T_C = 3.7 \text{ K}; 7.2 \text{ K}$

#### e.g. YbCu<sub>2</sub>Si<sub>2</sub>, TiNiSn, MnSnNi, RSb; RBiPt, RPbPt





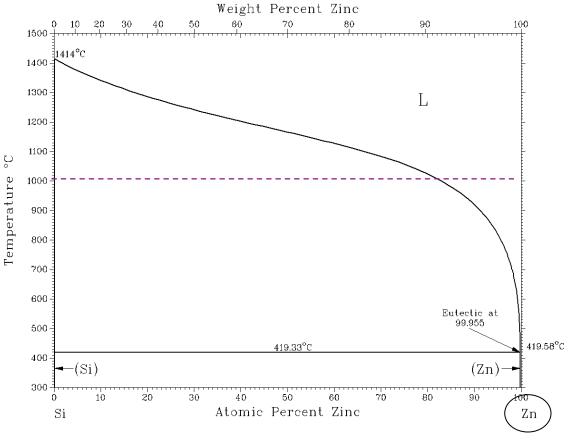

**Sb** • 
$$T_{melt} = 630 \text{ °C}$$


• stability of *R*-Sb phases

e.g. *RSb*<sub>2</sub>, U<sub>3</sub>Sb<sub>4</sub>Pt<sub>3</sub>, PtSb<sub>2</sub>





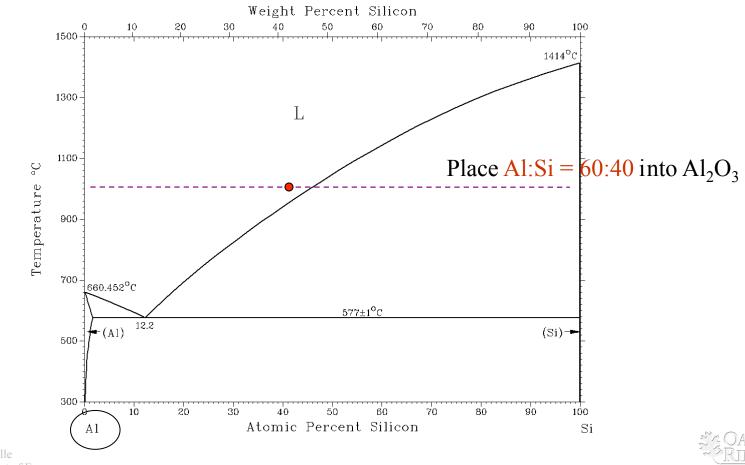

- Zn  $T_{melt} = 420$  °C e.g. InSb, GaSb, InAs, Si, Ge
- **Bi**  $T_{melt} = 272 \text{ °C}$  e.g. UPt<sub>3</sub>, PtMnSb, NiMnSb, UAl<sub>3</sub>, GaP, ZnSiP<sub>2</sub>, CdSiP<sub>2</sub>
- Cu  $T_{melt} = 1085 \text{ °C}$  e.g.  $RPh_4B_4$ ,  $RCu_2Si_2$ ,  $V_3Si$ ,  $RIr_2$ ,  $UIr_3$



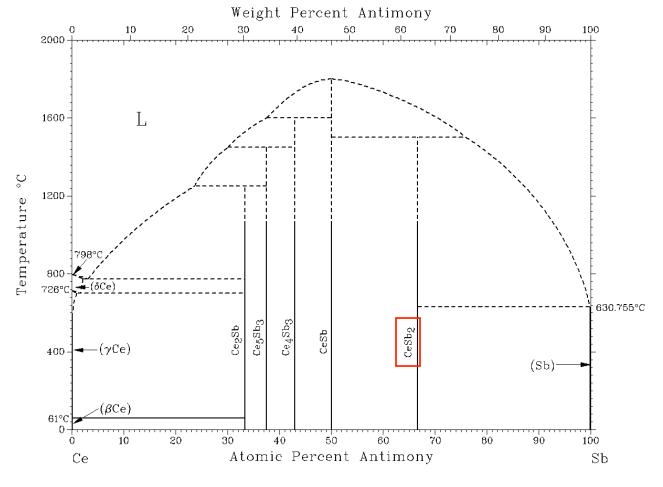


(I) How to make Si?  $(T_{melt} = 1412 \text{ °C})$ 

Let's aim for max temperature of our furnace of ~ 1000 °C Look up solvents that are low melting: Bi, Sn, Zn, Ga, Al

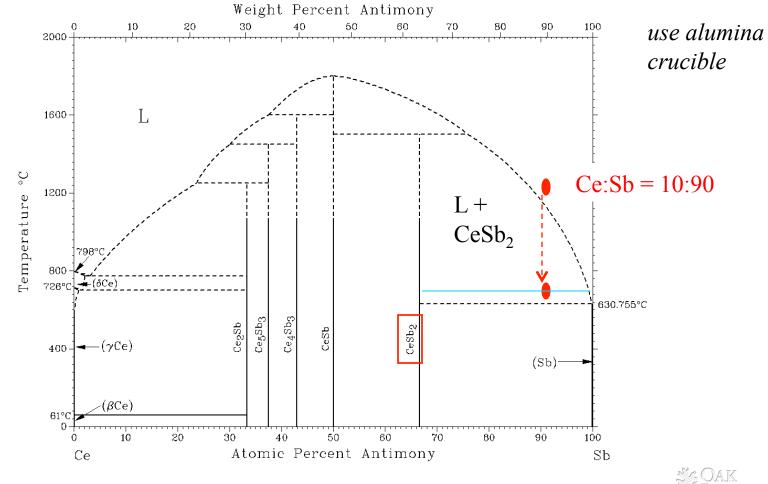






37 Managed by UT-Battelle for the U.S. Department of Energy

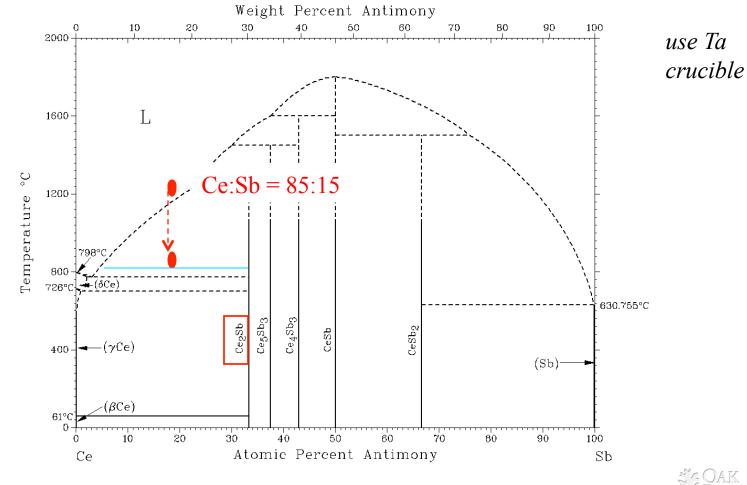
(1) How to make Si?  $(T_{melt} = 1412 \text{ °C})$ 

Let's aim for max temperature of our furnace of ~ 1000 °C Look up solvents that are low melting: Bi, Sn, Zn, Ga, Al Best solvent

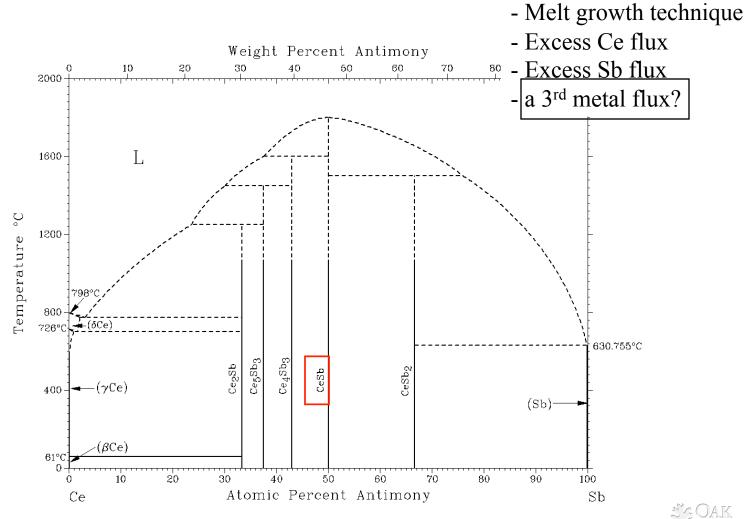



(2) How to make  $CeSb_2$ ? Melts incongruently



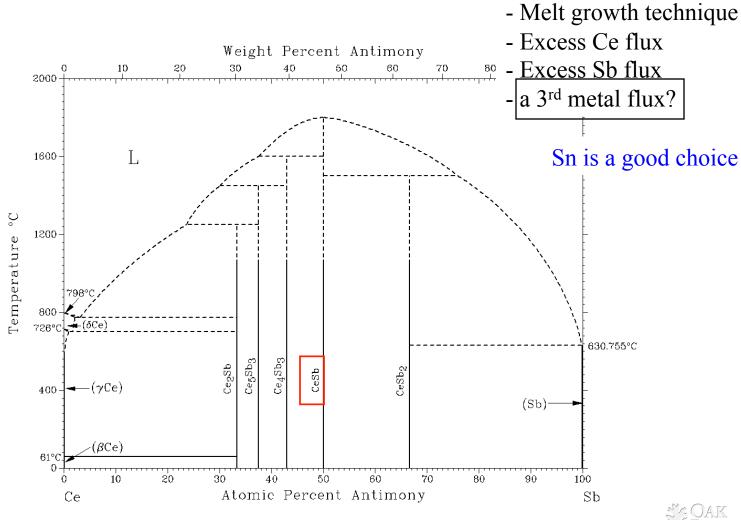



(2) How to make  $CeSb_2$ ? Melts incongruently



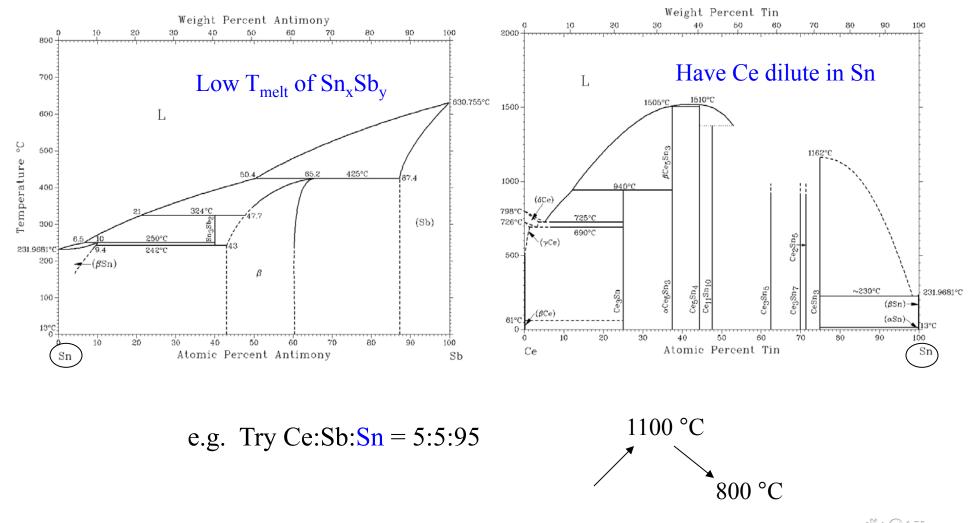

National Laborator

(3) How to make  $Ce_2Sb$ ? Melts incongruently




(4) How to make CeSb? Melts congruently at 1820 °C



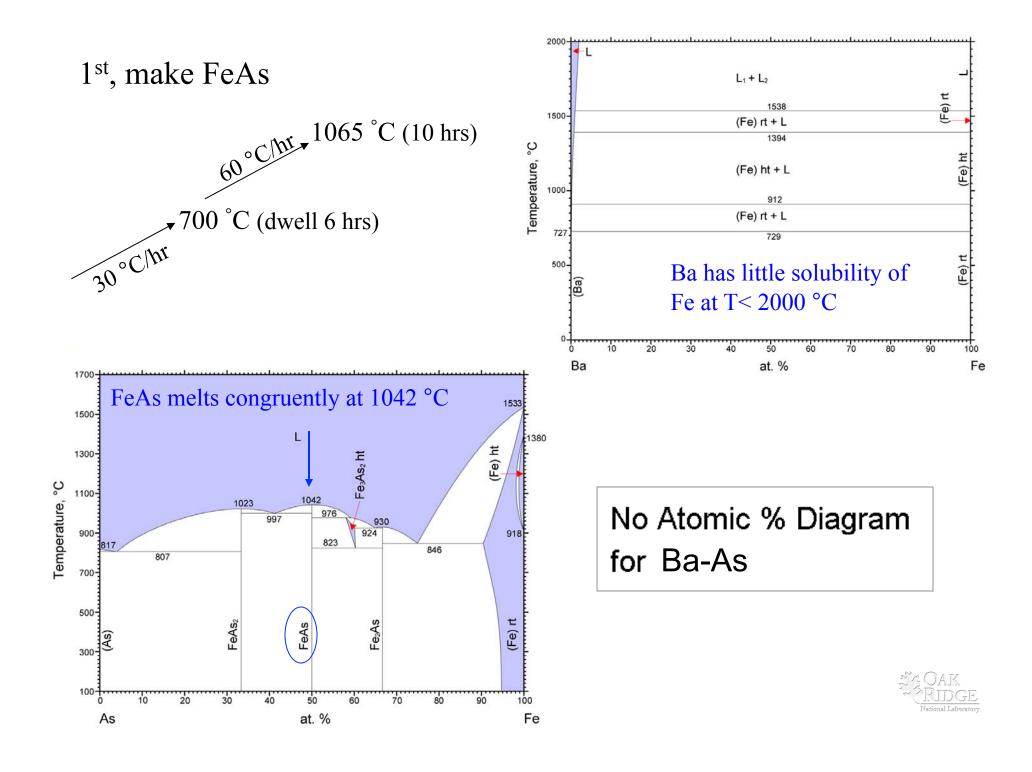

National Laborator

(4) How to make CeSb? Melts congruently at 1820 °C

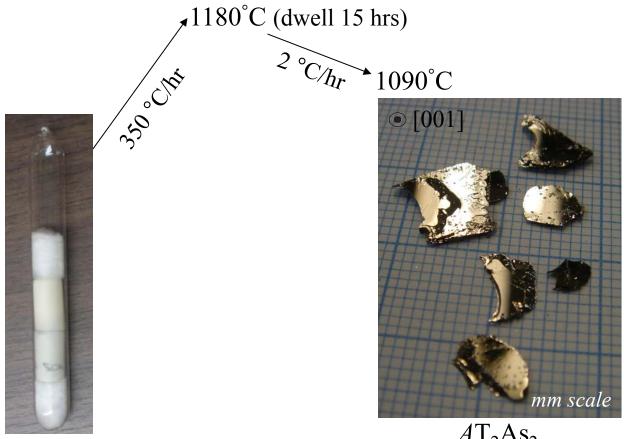


43 Managed by UT-Battelle for the U.S. Department of Energy National Laboratory

# • Sn is a low-melting element that offered good solubility for both Sb and Ce



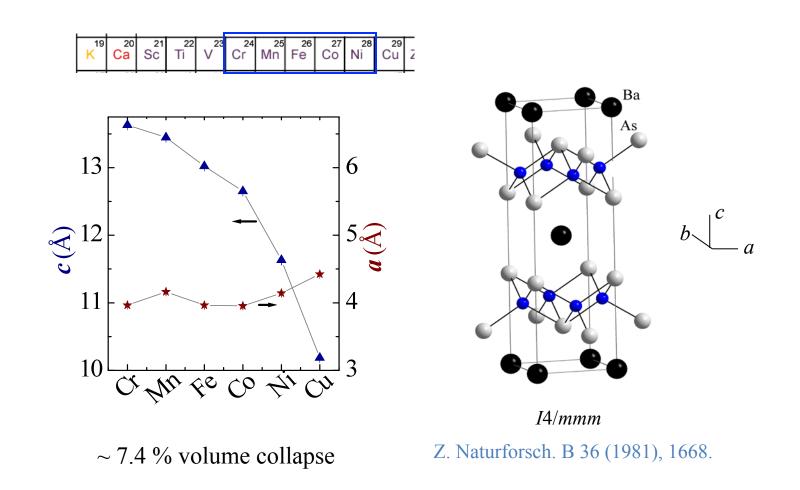

□ What are some of my research examples?


# Growth of BaFe<sub>2</sub>As<sub>2</sub>

- Ternary phase diagram not known
- Arsenic has a high vapor pressure (~600 °C, 1 atm)
- Look for binary phase diagrams: Ba-Fe, Fe-As, Ba-As

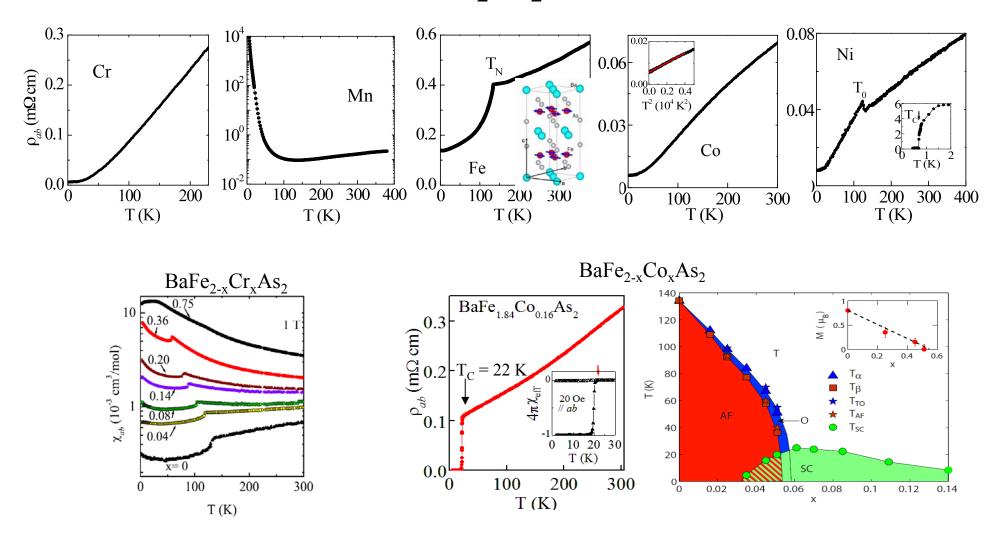





 $2^{nd}$ , put Ba(FeAs)<sub>5</sub> in alumina crucible, in silica



 $AT_2As_2$ (A = Ca, Sr, Ba; T = Cr, Mn, Fe, Co, Ni)

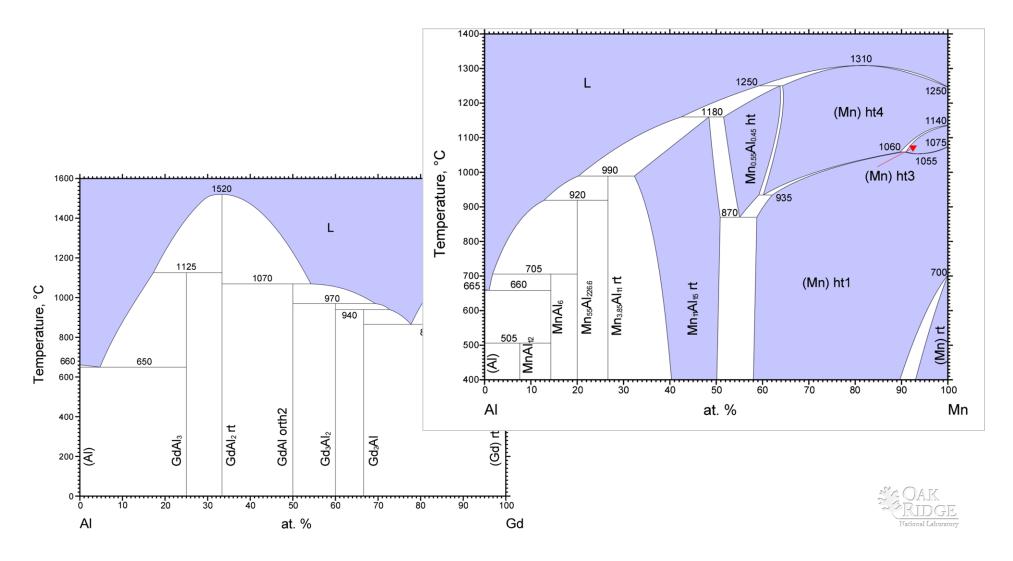

*Phys. Rev. Lett.* **101,** 117004 (2008). *Physica C* **469**, 350 (2009).



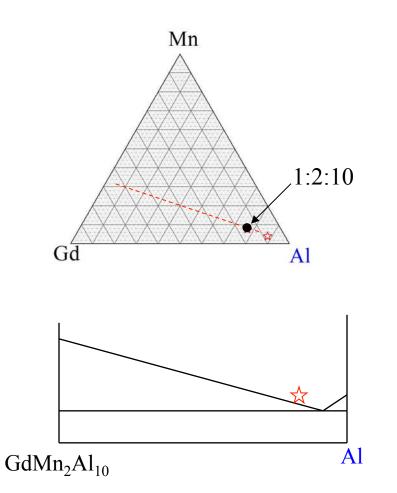


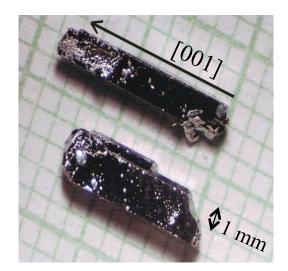


 $BaT_2As_2$ 

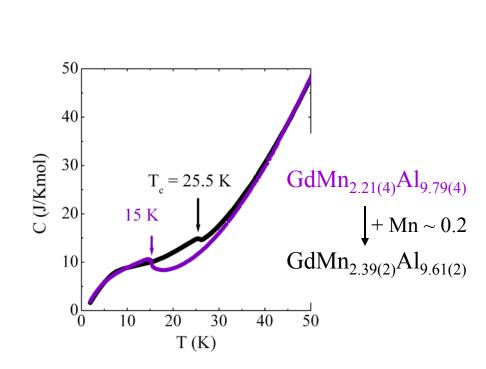



*Phys. Rev. Lett.* **101,** 117004 (2008). *Phys. Rev. B* **79**, 024512; 094429; 224524; 144523 (2009). *Physica C* **469**, 350 (2009).

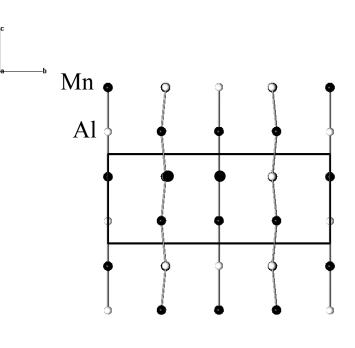




### Growth of $GdMn_2Al_{10}$

#### - Ternary phase diagram not known



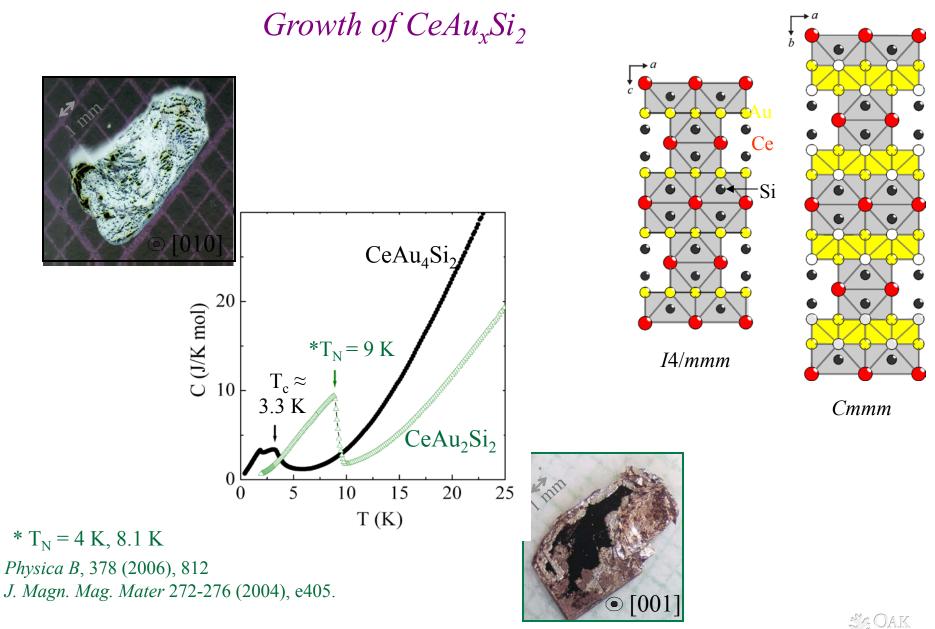

#### Try Gd:Mn:Al = 0.04: 0.08: 0.88 ☆





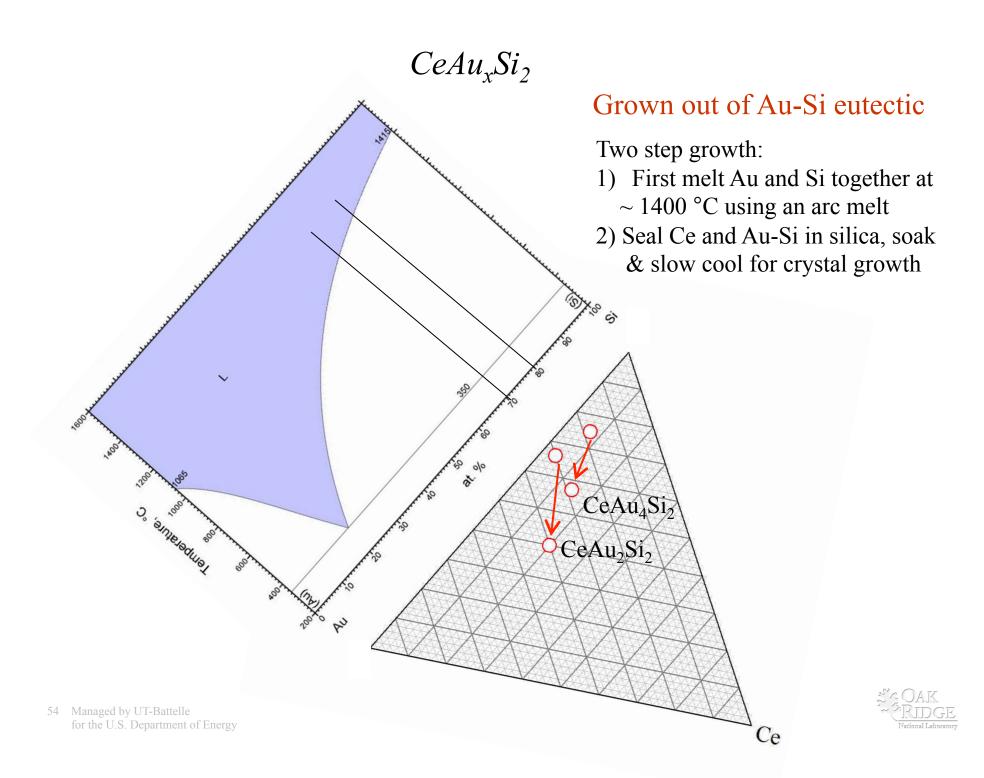


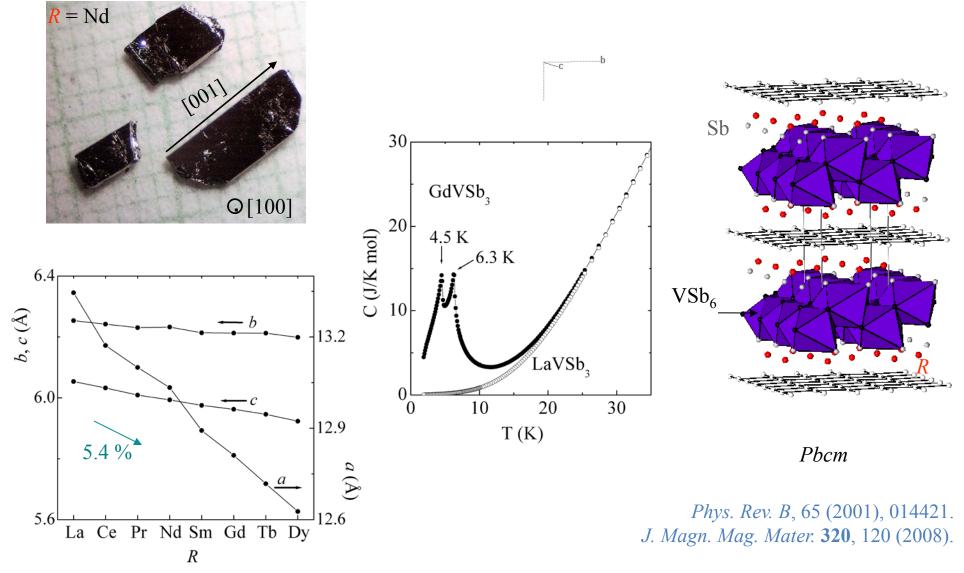




 $GdMn_2Al_{10}$ 



P4/nmm

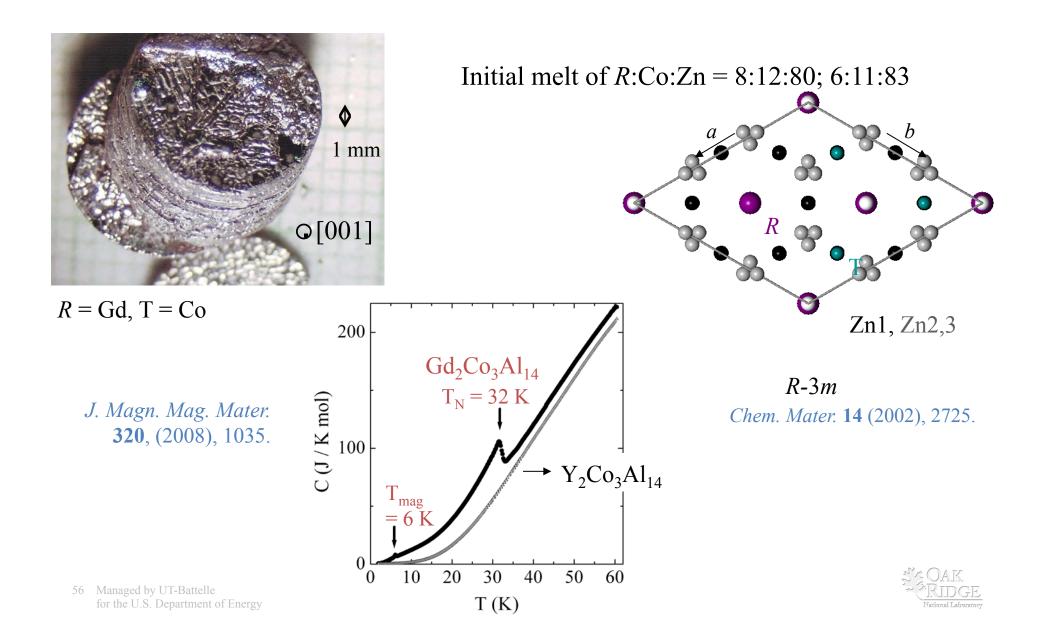

*Z. Naturforsch.* **53b** (1998), 673. *Phys. Rev. B* **76** (2007), 174419.






53 Managed by UT-Battelle for the U.S. Department of Energy

J. Solid State Chem. 181, 282 (2008).










## Growth of $R_2Co_3Zn_{14}$



# **Concluding remarks:**

 $\succ$  You can try to discover, and design that allow you to pursue the specific science that interest you.

> Although flux growth technique is less predictable than conventional crystal growth methods, the discovery of new materials may be made unexpectedly!

➢ Hope that you want to get in a synthesis lab and attempt crystal growth!

