Electron-Phonon Coupling: when Conventional becomes Unconventional

Warren E. Pickett, UC Davis

Acknowledgments: within the talk

Summer School on Novel Superconductivity, August 2009

The Other High Temperature Superconductors

56 K Fe-pnictides: class of doped ROFeAs (R = rare earth ion) 40 K MgB₂: a new s-p class with only one member ($?C_{2-x}B_x$?) 40 K Cs₃C₆₀: the lowest density A₃C₆₀ fulleride 35 K (Ba,K)BiO₃ (BKBO): s-p system, no excuse for this Tc 25 K Li_x(ZrNCl)₂: 2D layers, simple(?), low N(0) 20 K Li at 40 GPa: simple 2s metal pushed to its limits (2p) 19 K PuCoGa₅: 5f electron system, a new game entirely

Y 20 K at 115 GPa, Ca 25 K at 161 GPa C. Buzea *et al.*, Supercond. Sci. Technol. 18 (2005) R1–R8

(C. Buzea et al., Supercond. Sci. Technol. 18 (2005) R1-R8)

Highest critical temperature of simple elements as a function of the atomic number. (C. Buzea *et al.*, Supercond. Sci. Technol. **18** (2005) R1–R8)

Electron-Phonon Coupling

Hamiltonian for band electrons coupled to harmonic phonons:

$$H_{e-ph} = \sum_{ks} \epsilon_{ks} c^{\dagger}_{ks} c_{ks}$$
$$+ \sum_{q\nu} \hbar \omega_{q\nu} (b^{\dagger}_{q\nu} b_{q\nu} + \frac{1}{2})$$
$$+ \sum_{ks} \sum_{q\nu} [M^{\nu}_{k,q} c^{\dagger}_{k+q,s} c_{k,s} b_{q\nu} + h.c.]$$

The electron phonon matrix element

- The definition is the probability of scattering from the one-electron state |kj> to the state
 |k+Q j'> via the phonon Qv
- Mathematically:

$$M_{\vec{k}+\vec{Q}j',\vec{k}j}^{\vec{Q}v} = \left\langle \vec{k} + \vec{Q}j' \middle| \delta^{\vec{Q}v} V_{eff} \middle| \vec{k}j \right\rangle$$

Phonon-paired Superconductivity

Electrons become paired by (attractive) exchange of virtual phonons, which overcomes the (repulsive) electron-electron repulsion if the elph coupling is sufficiently strong. Pairs coalesce into a macroscopic broken-gauge-symmetry state with long-range phase coherence.

Phonon self-energy bubble: electron-hole pair creation and reabsorption

Electron self-energy: phonon emission and reabsorption

"Migdal's theorem": vertex corrections are order m/M (negligible) in normal state Electron-Phonon Coupling: General Results for $\lambda_{Q\nu}$ and $\gamma_{Q\nu}$ P. B. Allen, PR B6, 2577 (1972)

$$\begin{split} \lambda &= \frac{1}{N_{\nu}} \sum_{Q,\nu=1}^{N_{\nu}} \lambda_{\vec{Q},\nu} = 2 \int \frac{\alpha^2 F(\omega)}{\omega} d\omega \\ \alpha^2 F(\omega) &= \frac{2}{\pi N(0)\omega} \sum_{Q\nu} \gamma_{Q\nu} \delta(\omega_{Q\nu} - \omega) \\ \omega_{Q\nu}^2 &= \Omega_{Q\nu}^2 + 2\Omega_{Q\nu}^2 Re \ \Pi(Q, \omega_{Q\nu}) \\ \gamma_{Q\nu} &= \frac{\Omega_{q\nu}}{\omega_{Q\nu}} Im \ \Pi(Q, \omega_{Q\nu}) \\ &= \pi \sum_k |M_{k,k+Q}|^2 \delta(\varepsilon_k) \delta(\varepsilon_{k+Q}) \\ \lambda &= \frac{1}{N_{\nu}} \sum_{Q\nu} \lambda_{Q\nu} = \frac{4}{\pi N(0)} \sum_{Q\nu} \frac{\gamma_{Q\nu}}{\omega_{Q\nu}^2} \end{split}$$

Formalism: Electron-Phonon Coupling

Phonon scattering electron: from Fermi surface to Fermi surface The electron-phonon coupling strength for phonon (\vec{Q}, ν) is given by[1]

$$\lambda_{\vec{Q},\nu} = 4 \frac{2}{\omega_{\vec{Q},\nu}} \sum_{k} |M_{k,k+Q}|^2 \delta(\varepsilon_k) \delta(\varepsilon_{k+Q}) = 4 \frac{2V_c}{\omega_{\vec{Q},\nu}} |M|^2 \int_{\mathcal{L}} \frac{d\mathcal{L}(k,Q)}{|\vec{v}_k \times \vec{v}_{k+Q}|}$$
(1)
$$\xi_{\vec{Q}} = \sum_{k} \delta(\varepsilon_k) \delta(\varepsilon_{k+Q}) = V_c \int_{\mathcal{L}} \frac{d\mathcal{L}(k,Q)}{|\vec{v}_k \times \vec{v}_{k+Q}|}$$

 \mathcal{L} is the line of intersection between the Fermi surface, and its \vec{q} -displaced image.

Phonon softening: electron-hole pair emission/reabsorption

The phonon frequency is renormalized downward by the strong coupling, which is expressed in terms of the associated phonon self-energy $\Pi(Q, \omega)$:

$$\omega_{Q\nu}^{2} = \Omega_{Q\nu}^{2} + 2\Omega_{Q\nu}^{2} \Pi(Q, \omega_{Q\nu})$$

$$\Pi(Q, \omega) = -2\sum_{k} |M_{k,k+Q}|^{2} \frac{f_{k} - f_{k+Q}}{\varepsilon_{k+Q} - \varepsilon_{k} - \omega - i\delta},$$

Theory of Strong Coupling Superconductivity

G. M. Eliashberg, Sov. Phys. JETP (1960) Scalapino, Schrieffer, Wilkins, Phys. Rev. (1966)

Starting from full electron+nuclei Hamiltonian

- * Presume electrons form a Fermi liquid state
- * Presume stable structure -> conventional phonons
- * Presume conventional el-ph theory holds (Migdal's theorem)
- * Presume el-el interaction is not anomalous

Complex-valued energy-dependent gap function for Pb

FIG. 10. The effective tunneling density of states $N_T(\omega)/N(0) = \operatorname{Re}(\omega/(\omega^2 - \Delta^g(\omega))^{1/2})$ versus $(\omega - \Delta_0)/\omega_1^{r}$ (solid) obtained from Δ of Fig. 8. The ratio of the differential conductance of Pb in the superconducting to that in the normal state (Ref. 25) is plotted (dash-dot) as a function of $(\omega - \Delta e)/\omega_1^{\nu}$. The prediction of the simplified BCS model $\omega/(\omega^2 - \Delta e^2)^{1/2}$ is shown as the short dashed curve.

General Results for $\lambda_{O\nu}$ and $\gamma_{O\nu}$ P. B. Allen, PR B6, 2577 (1972)

$$\lambda = \frac{1}{N_{\nu}} \sum_{Q,\nu=1}^{N_{\nu}} \lambda_{\vec{Q},\nu} = 2 \int \frac{\alpha^2 F(\omega)}{\omega} d\omega$$

$$F(\omega) = \frac{2}{\pi N(0)\omega} \sum_{Q\nu} \gamma_{Q\nu} \delta(\omega_{Q\nu} - \omega)$$

$$\omega_{Q\nu}^2 = \Omega_{Q\nu}^2 + 2\Omega_{Q\nu}^2 Re \Pi(Q, \omega_{Q\nu})$$

$$\gamma_{Q\nu} = \frac{\Omega_{q\nu}}{\omega_{Q\nu}} Im \Pi(Q, \omega_{Q\nu})$$

$$= \pi \sum_{Q\nu} |M_{\nu} + \omega_{\rho}|^2 \delta(z_{\nu}) \delta(z_{\nu} + \omega)$$

 α^2

$$= \pi \sum_{k} |M_{k,k+Q}|^{z} \delta(\varepsilon_{k}) \delta(\varepsilon_{k+Q})$$

$$\lambda = \frac{1}{N_{\nu}} \sum_{Q\nu} \lambda_{Q\nu} = \frac{4}{\pi N(0)} \sum_{Q\nu} \frac{\gamma_{Q\nu}}{\omega_{Q\nu}^2}$$

Electron-Phonon Coupling:

Rowell, McMillan. Feldman (1969)

Metal	$T_{\epsilon}(K)$	$\Theta_D(K)$	λ_{McM}^*	$\lambda_{\rm tr}$	λ _{Lun}	λ_{LDA}
Be	0.026	1 3 9 0	0.23			
Al	1.16	428	0.38	0.39 ^b		0.44 ^{c d}
Zn	0.85	309	0.38	0.46°		
a-Ga	1.08	325	0.40			
3-Ga	5.9				0.97^{f}	
Cal	0.52	209	0.38	0.37°		
[n	3.40	112	0.69		0.834^{8}	
Sn	3.72	200	0.60		0.72 ^h	
Hg	4.16	72	1.00		1.60	
TI	2.38	79	0.71	1.11°	0.78^{f}	
РЬ	7.19	105	1.12	1.48 ^b	1.55 ^j	$1.20^{d}, 1.68^{c}$
Ti	0.39	425	0.38	0.50^{k}		
V	5.30	399	0.60	1.09 ^b	0.831	1.19°
Zr	0.55	290	0.41	0.55 ^k		
Nb	9.22	277	0.82	1.06^{b}	1.05 ^m	1.26°
Mo	0.92	460	0.41	0.32^{b}		0.42 ^c
Ru	0.49	550	0.38	0.45°		
Hf	0.09	252	0.34	0.42^{k}		
Ta	4.48	258	0.65	0.87^{b}	0.69 ⁿ , 0.73°	0.86°
W	0.012	390	0.28	0.26^{b}		
Re	1.69	415	0.46	0.76°		
Os	0.65	500	0.39	0.54°		
[r	0.14	420	0.34	0.50^{b}		
a-La	4.88	151	0.81 ^p		$(0.77)^{q}$	
3-La	6.00	139	0.93 ^P			
Th	1.38	165	0.56 ^b	0.52 ^b		

TABLE II. Values of λ for superconducting crystalline elements

From P. B. Allen, Handbook of Superconductivity, ed. C. Poole, Jr. (Academic, New York, 1999), Ch. 9, Sec. G, pp. 478-483.

Metal	$\lambda_{\rm tr}^{\rm a}$	λ_{LDA}	$\lambda_{ ext{other}}$	Metal
Li	0.35	$0.45 - 0.51^{b}$		In ₂ Bi
Na	0.14		0.24 °	Bi_2Tl
K	0.11			Tl ₇ Sb ₂
Rb	0.15			V ₃ Si
Cs	0.16			Nb ₂ Al
Cu	0.13	0.14 ^d	$0.14 \pm 0.02^{\circ}$	Nb ₂ Sn
Ag	0.12			Nb ₂ Ge
Au	0.15		0.2 ⁴	NEN
Mg	0.208			NKO
Ca	0.05			
Ba	0.27			ReO ₃
Sc	0.518			RuO ₂
Y	0.62^8			CoSi ₂
Pd	0.47	0.35 ^d		Pd ₂ Si
Pt	0.66			LuNi ₂ B ₂ C
Gd			0.6 ^h	La3 Ni2 B2 N3-8

TABLE IV. Values of λ for non-superconducting crystalline elements

TABLE V. Values of λ for crystalline compounds and ordered intermetallics

Metal	T_{c}	λ _{tun}	λ _{ir}	$\lambda_{ m McM}$
In ₂ Bi	5.6	1.40 ^a		
Bi ₂ Tl	6.4	1.63*		
Tl7Sb2	5.2	1.43ª		
V ₃ Si	17.1	0.89^{b}		
Nb ₃ Al	18.5	1.7°		
Nb ₃ Sn	17.8	1.75^{d}		
Nb ₃ Ge	≈ 20	1.7^{b}		
NBN	16.0	1.46^{b}		
NEO	1.4		0.51°	0.41°
ReO ₃	<0.02		0.35 ⁴	
RuO ₂	<4.2		0.5 ± 0.1 ⁸	
CoSi ₂	1.22		0.44 ¹	
Pd ₂ Si			$0.15 - 0.20^{\rm f}$	
LuNi ₂ B ₂ C	16.1		0.9 ^h , 0.8 ⁱ	1.0 ^h
La ₃ Ni ₂ B ₂ N ₃₋₈	12.25		0.29 ^j	0.86 ^j

From P. B. Allen, Handbook of Superconductivity, ed. C. Poole, Jr. (Academic, New York, 1999), Ch. 9, Sec. G, pp. 478-483.

Strong Coupling: Good News, Bad News

P. B. Allen

Fig. 3. Causative relations are indicated by arrows. High T_c is partly a direct consequence of the primary factors, and partly indirect through the phonon dispersion. Dashed lines with arrows represent less certain relationships.

Matthias' Rules (ca. 1970)

- 1. Must use transition metal atoms
- 2. Special e/a ratios [high values of $N(E_F)$]
- 3. Cubic symmetry is best

Unwritten Rules

- 1. Coupling must be uniform in q, not focused
- 2. Coupling to all phonon branches, not a few
- 3. Very soft phonons are not favorable

Superconductivity and Lattice Instability in Compressed Lithium: Fermi Surface Hot Spots

Warren E. Pickett, Deepa Kasinathan, Jan Kunes, Amy Lazicki, Helge Rosner, Choong-shik Yoo and Richard T. Scalettar

UC Davis

Acknowledgements to: S. Y. Savrasov, K. Koepernik, A. K. McMahan

Superconductivity and Lattice Instability in Compressed Lithium: Fermi Surface Hot Spots

Warren E. Pickett, Deepa Kasinathan, Jan Kunes, Amy Lazicki, Helge Rosner, Choong-shik Yoo and Richard T. Scalettar

UC Davis

Acknowledgements to: S. Y. Savrasov, K. Koepernik, A. K. McMahan

Pressure as a Tool to Produce Superconductors: Elemental Metals under Pressure: $T_c=20-25K$

Pressure (GPa)

20 K at 50 GPa.

Quick Confirmation: Geophysical Lab

T_c vs. Pressure

- Struzhkin, Eremits, Gan, Mao, Hemley,
- Science 298, 1213 (2002).
- Superconductivity and
- identification of phases.
- T_c=16K in fcc phase
- around 40 GPa.

Further elucidation: Washington University

- Deemyad and Schilling,
- PRL 91, 167001 (2003).
- Superconductivity peak
- at 30 GPa in fcc phase
- Near-hydrostatic conditions
- Rise in Tc beyond 40 GPa.

Real part of the ac susceptibility signal in nanovolts versus temperature for yttrium at a variety of different pressures ranging from 33 to 115 GPa.

J. J. Hamlin et al., Phys. Rev. B 73, 094522 (2006)

J. J. Hamlin et al., unpublished (2006)

Results of experiments of *Tc* versus relative volume V/V0

Computational Methods

- LAPW, FPLO codes for
 - study of change of
 - electronic structure
 - under pressure

Savrasov's full potential LMTO code for calculation of: •phonon dispersion curves •el-ph matrix elements

spectral function

Savrasov, PR B 54, 16470 (1996) Savrasov & Savrasov, ibid. 16487 (1996)

Some Basic Orientation

- Fermi surface of Li in fcc structure at 35 GPa
- (V/Vo = 0.51)
- Necks appear along <111> directions
- (a la Cu) at 20 PGa
- Velocities: 0.3 on necks, 0.7 on bellies (10⁸ cm/s)

The Nesting Function in fcc Li $\xi_{\vec{Q}} = \sum_{k} \delta(\varepsilon_{k}) \delta(\varepsilon_{k+Q}) = V_{c} \int_{\mathcal{L}} \frac{d\mathcal{L}(k,Q)}{|\vec{v}_{k} \times \vec{v}_{k+Q}|}$

For spherical Fermi surface, there would be only step discontinuities. Some can be seen: blue to green across ridge.

Red regions are mountain ranges, which contain strong weight and can be logarithmically divergent.

Fermi Surface Nesting Function for Li (35 GPa)

Electron-Phonon Spectral Function

Evolution of el-ph coupling weight with pressure

P=0: weak, evenly spread

P=10: LA mode hardens, weight grows at 30 meV

P=20: LA mode is harder, large weight at 15 meV

P=35: instability (see low frequency region)

El-ph weight grows at low energy (not high as in MgB2)

Material Constants from the Spectral Function

P (GPa)	$\hat{\mathbf{a}}$ (\mathbf{a}_B)	V/V ₀	$N(E_F)$ (states/Ry/spin/atom)	$<\omega>$ (meV)	$<\omega^2>^{1/2}$ (K)	$\begin{array}{c} \omega_{1n} \\ (\mathrm{K}) \end{array}$	λ
0	8.0069	1.00	3.537	21	278	209	0.42
10	7.2298	0.74	3.031	22	229	225	0.65
20	6.8003	0.61	2.789	10	170	84	3.15
35	6.4085	0.51	2.573	10	220	130	2.77

Calculating T_c supposing that $\mu *=0.15$, one obtains P= 0: T_c = 0.4 K P=10: T_c = 5 K P=20: T_c = 20 K

Clearly these numbers are not really accurate. Anharmonic corrections will become large, when phonons begin to become soft/unstable. Summarizing Comments on Lithium

- Band structure evolves strongly under pressure: change from s metal to sp metal. Not a very striking change, however.
- Fermi surface in fcc structure develops necks along the (111) directions. Distortion from spherical seems to be significant.
- On-Fermi-surface scattering processes become focused onto certain "hot spots" near the necks.
- Linear response calculations of EPI indicate strong coupling and T_c ~ 15-20 K, consistent with experiment.
- But: we have no simple physical picture of the strong coupling. And yttrium and calcium also have T_c ~ 20-25K under pressure.

Y, Ca: also "high T_c" under pressure

- Y: 20 K around 1 GPa, still increasing
- Ca: 25 K reported above 1 GPa
- Ca: structures and structural transitions under pressure are unusual, interesting

Electron-Phonon Coupling in 2D

The remarkable case of MgB₂: *unconventional* el-ph coupling.

Akimitsu's Discovery: 2001

MgB₂, a common chemical reagent.

Searching for ferromagnetism, superconductivity at 40 K was discovered

Quickly reproduced and synthesis techniques were extended by several groups

Crystal structure is simple. Quasi-2D.

Electronic structure is simple: s-p electrons.

Nagamatsu, Nakagawa, Muranaka, Zenitani, and Akimitsu, Nature **410**, 63 (2001)

Four Months Later: Puzzle Solved!

T. Yildirim (NIST)

2. Deformation potential D=13 eV/A

(amazingly large for a metal)

- 3. 2D (cylinder) Fermi surfaces focus strength
- 4. Yet structure remains stable: intrinsic covalency
 - J. M. An and WEP, Phys. Rev. Lett. (2001) J. Kortus et al., Phys. Rev. Lett. (2001) Y. Kong et al., Phys. Rev. B (2001) K.-P. Bohnen et al., Phys. Rev. Lett. (2001)more.....

Y. KONG, O. V. DOLGOV, O. JEPSEN, AND O. K. ANDERSEN

PHYSICAL REVIEW B 64 020501(R)

FIG. 1. Left: Calculated phonon dispersion curves in MgB₂. The area of each circle is proportional to the mode λ . The insets at the bottom show the two ΓA E eigenvectors (not normalized), which apply to the holes at the top of the σ bands (bond-orbital coefficients) as well as to the optical bond-stretching phonons (relative change of bond lengths). Right: $F(\omega)$ (full curve and bottom scale), $\alpha^2(\omega)F(\omega)$ (broken), and $\alpha^2_{\mu}(\omega)F(\omega)$ (dotted). See text. Electron-Phonon Coupling: General Results for $\lambda_{Q\nu}$ and $\gamma_{Q\nu}$ P. B. Allen, PR B6, 2577 (1972)

$$\begin{split} \lambda &= \frac{1}{N_{\nu}} \sum_{Q,\nu=1}^{N_{\nu}} \lambda_{\vec{Q},\nu} = 2 \int \frac{\alpha^2 F(\omega)}{\omega} d\omega \\ \alpha^2 F(\omega) &= \frac{2}{\pi N(0)\omega} \sum_{Q\nu} \gamma_{Q\nu} \delta(\omega_{Q\nu} - \omega) \\ \omega_{Q\nu}^2 &= \Omega_{Q\nu}^2 + 2\Omega_{Q\nu}^2 Re \ \Pi(Q, \omega_{Q\nu}) \\ \gamma_{Q\nu} &= \frac{\Omega_{q\nu}}{\omega_{Q\nu}} Im \ \Pi(Q, \omega_{Q\nu}) \\ &= \pi \sum_k |M_{k,k+Q}|^2 \delta(\varepsilon_k) \delta(\varepsilon_{k+Q}) \\ \lambda &= \frac{1}{N_{\nu}} \sum_{Q\nu} \lambda_{Q\nu} = \frac{4}{\pi N(0)} \sum_{Q\nu} \frac{\gamma_{Q\nu}}{\omega_{Q\nu}^2} \end{split}$$

3% of phonons have $\lambda \sim 25!$ Rest of phonons have $\lambda \sim 0.3$

$$\lambda_{\vec{Q},\nu} = 4 \frac{2}{\omega_{\vec{Q},\nu}} \sum_{k} |M_{k,k+Q}|^2 \delta(\varepsilon_k) \delta(\varepsilon_{k+Q})$$

$$= 4 \frac{4\pi V_c |M|^2}{\omega_{\vec{Q},\nu} ck_F^2} \frac{1}{x\sqrt{1-x^2}}, x \equiv \frac{Q}{2k_F}$$

Phonons and Electrons in 2D

Reference system ("unrenormalized") \rightarrow renormalized system

Limits to Strong Coupling in 2D

2D MgB₂-like material, circular Fermi surfaces

Phonon Renormalization

Dependence on Carrier Density

Magnitude of renormalization is independent of carrier density

Phonon Renormalization (Self Energy)

Cylinder Fermi surface leads to sharp Kohn anomaly Large matrix elements lead to strong renormalization for Q<2k_F Extreme Electron-Phonon Coupling: Kohn Anomalies

$$\omega_{Q\nu}^2 = \Omega_{Q\nu}^2 + 2\Omega_{Q\nu}^2 \Pi(Q, \omega_{Q\nu})$$

$$\Pi(Q,\omega) = -2\sum_{k} |M_{k,k+Q}|^2 \frac{f_k - f_{k+Q}}{\varepsilon_{k+Q} - \varepsilon_k - \omega - i\delta}$$

2D dispersion, slowly varying matrix elements give

$$\Pi_{\nu}(Q,\omega) = -2|M_{\nu}|^2 \chi_L^{2D}(Q,\omega)$$

2D Kohn Anomaly

Pinpointing of Strong Electron-Phonon Coupling

Y. KONG, O. V. DOLGOV, O. JEPSEN, AND O. K. ANDERSEN

PHYSICAL REVIEW B 64 020501(R)

FIG. 1. Left: Calculated phonon dispersion curves in MgB₂. The area of each circle is proportional to the mode λ . The insets at the bottom show the two ΓA E eigenvectors (not normalized), which apply to the holes at the top of the σ bands (bond-orbital coefficients) as well as to the optical bond-stretching phonons (relative change of bond lengths). Right: $F(\omega)$ (full curve and bottom scale), $\alpha^2(\omega)F(\omega)$ (broken), and $\alpha^2_{i\nu}(\omega)F(\omega)$ (dotted). See text.

Raman spectrum Bohnen, Heid, Renker (2002)

Shukla et al. Phys. Rev. Lett. (2003) Inelastic x-ray scattering measurements

3% of phonons have $\lambda \sim 25!$ Rest of phonons have $\lambda \sim 0.3$

> W. Weber et al., PRL (1978)

Prediction of a "better MgB₂": Li_{1-x}BC

Rosner, Kitiagorodsky, WEP, Phys. Rev. Lett. (2002)

Structurally, chemically, similar to MgB₂ Semiconductor, so hole-doping is required (de-intercalation of Li) Deformation potential 50% larger than MgB₂ $T_c = 75$ K (or higher) might be possible

Not so simple experimentally!

Several reports of inability to prepare $Li_{1-x}BC$ Reports that $Li_{1-x}BC$ is not superconducting:

Zhao, Klavins, Liu, J. Appl. Phys. (2003) Fogg, Claridge, Darling, Rosseinsky (2003)

But the $Li_{1-x}BC$ samples are not well characterized(?).

Electron-Phonon Coupling Strength Calculated for Li_{1-x}BC

EI-Ph Coupling in MgB₂-like Systems

125 -

Mode λ_Q and Total Coupling Strength λ

$$\begin{split} \lambda_{Q} &= \frac{2}{\pi N(0)} \frac{\gamma_{Q}}{\omega_{Q}^{2}} \\ \gamma_{Q} &= \pi \Omega_{Q} |g|^{2} [N(0)]^{2} d_{b}^{2} \hat{\xi}(Q), \\ \hat{\xi}(Q) &= \frac{\sum_{k} \delta(\varepsilon_{k}) \delta(\varepsilon_{k+Q})}{[\sum_{k} \delta(\varepsilon_{k})]^{2}} = \frac{A_{BZ}}{A_{FS}} \frac{1}{\pi} \frac{\theta(1-\eta)}{\eta\sqrt{1-\eta^{2}}} \\ \lambda &= \sum_{Q\nu} \lambda_{Q\nu} = d_{b}^{2} \frac{N(0)\mathcal{D}^{2}}{M\omega_{Q}^{2}} \leftrightarrow \frac{N(\varepsilon_{F}) < I^{2} >}{M < \omega^{2} >} \\ &= \frac{d_{b}^{2} N(0)\mathcal{D}^{2}}{M\Omega_{Q}^{2} - d_{b}^{2} N(0)\mathcal{D}^{2}}, \quad N(0) = \frac{m^{*}}{2\pi} \\ &= \frac{\lambda_{o}}{1-\lambda_{o}}, \quad \lambda_{o} \equiv \frac{d_{b}^{2} N(0)\mathcal{D}^{2}}{M\Omega_{Q}^{2}} \end{split}$$

mode λ_Q scales inversely with carrier density (A_{FS} ≡ πk_F²)
total λ is independent of carrier density

Why Isn't MgB_2 a Higher T_c Material?

How could MgB₂ have been better? Relations to use:

$$\lambda_o \equiv \frac{d_b^2 N(0) \mathcal{D}^2}{M \Omega^2}; \quad \lambda = \frac{\lambda_o}{1 - \lambda_o}$$

$$T_c \approx \frac{\langle \omega \rangle}{4} [e^{2/\lambda_{eff}} - 1]^{-1/2}; \quad \lambda_{eff} = \frac{\lambda - \mu^*}{1 + 0.75\lambda\mu^* + 2\mu^*}$$

 Suppose Ω had been different from what it is, Ω_{AlB₂} =1050 cm⁻¹. With other factors the same, the parent system would have been unstable if Ω = 850 cm⁻¹. Hence MgB₂ is not so far from not having existed.

 What if Ω were even bigger? λ_o and λ would be smaller but the energy/temperature scale (prefactor in T_c) would have been higher.

• What if the coupling (deformation potential \mathcal{D}) had been larger? If \mathcal{D}) were 20% larger (\mathcal{D}^2 44% larger), $\lambda_o \to 1$ and MgB₂ would be unstable.

Engineering an Optimized MgB₂

An Optimized MgB₂ would have T_c =55-60K

Is there some other way to win? Yes.

Make serious use of two-dimensionality in the boson coupling.

Design of higher T_c superconductors: is it viable?

Rational Design/Search for new hTS

Design of higher T_c superconductors: is it viable?

Rational Design/Search for new hTS

Summarizing Comments

- Simple metals Y, Ca, and early transition metal Y become "high temperature" superconductors (20-25K) at high pressure. Strong coupling Eliashberg theory works for these metals, but there is no straightforward physical picture for why the coupling gets so large.
- MgB2 is an impressive el-ph superconductor in spite of using only 3% of its phonons effectively. This is a humbling lesson, and it provides a blueprint for even better superconductors in this class.