

Delia J. Milliron The Molecular Foundry, Lawrence Berkeley National Lab

Preparative Strategies in Solid State and Materials Chemistry UCSB-ICMR Summer School August 12, 2010





## Lecture I: Fundamentals of nanocrystal synthesis

- Basic apparatus & techniques
- Minimizing polydispersity
- Size control
- Crystal phase control
- Lecture 2: Complex structures
  - Shape control
  - Heterostructures & chemical conversion
  - Oriented attachment





## Lecture I: Fundamentals of nanoparticle synthesis

- Basic apparatus & techniques
- Minimizing polydispersity
- Size control
- Crystal phase control
- Lecture 2: Complex structures
  - Shape control
  - Heterostructures & chemical conversion
  - Oriented attachment





# Surface energy of crystal facets determines lowest energy shape

## $\Delta G_{surf} = (\gamma_a A_a + \gamma_b A_B)$







## $\Delta G_{surf} = (\gamma_a A_a + \gamma_b A_B)$





## Surface energy of crystal facets determines lowest energy shape

 $\Delta G_{surf} = (\gamma_a A_a + \gamma_b A_B)$ 

Wulff shape minimizes energy given y of each facet







### Manna, L., et al. J. Phys. Chem. B (2005)

MOLECULAR FOUNDRY





# Growth of CdSe nanorods: Minimizing the area of the high energy facet



### Alivisatos, et al. (2000-2004).





# Growth of CdSe nanorods: Minimizing the area of the high energy facet



### Alivisatos, et al. (2000-2004).

MOLECULAR FOUNDRY











 Even without ligands, lowest energy shape of CdSe should be similarly elongated









#### G. Galli, et al. Nano Lett (2004).





 Even without ligands, lowest energy shape of CdSe should be similarly elongated

## G. Galli, et al. Nano Lett (2004).





## What about kinetics?





## G. Galli, et al. Nano Lett (2004).



## What about kinetics?



## G. Galli, et al. Nano Lett (2004).







#### Alivisatos, et al. Nature Mater. (2003)

MOLECULAR FOUNDRY





#### Alivisatos, et al. Nature Mater. (2003)







#### Alivisatos, et al. Nature Mater. (2003)



## Variation of arm length and diameter



Alivisatos, et al. Nature Mater. (2003)

ົ້າກາງງາ

## Current model of CdTe tetrapod structure: 100% wurtzite



### Manna, L. et al J. Am. Chem. Soc. (2006)

Thursday, August 12, 2010

111111

## Ripening of CdTe tetrapods reveals kinetic structure of nanorod arms













## Lecture I: Fundamentals of nanoparticle synthesis

- Basic apparatus & techniques
- Minimizing polydispersity
- Size control
- Crystal phase control
- Lecture 2: Complex structures
  - Shape control
  - Heterostructures & chemical conversion
  - Oriented attachment























Variation of heterogeneous nucleation activation energy with contact angle



 $f\left(\theta\right)$ 







 $f(\theta)$  1/4

 $\theta = 60$ 

1⁄2

 $\theta = 90^{\circ}$ 





 $f(\theta)$  1/4

1⁄2





• When  $\theta < 180^{\circ}$ C, S<sub>c</sub> for heterogeneous nucleation is less than for homogeneous nucleation and selective heterogeneous growth is achievable.











### Epitaxial strain









### Epitaxial strain



Strain due to lattice mismatch adds to free energy

 Nano-differences: deformation of core, isotropic vs biaxial strain, increase in surface area





#### Hollingsworth, et al. JACS (2008); Manna, et al. JACS (2009).





Keep supersaturation low to avoid secondary nucleation

#### Hollingsworth, et al. JACS (2008); Manna, et al. JACS (2009).





Keep supersaturation low to avoid secondary nucleation







Keep supersaturation low to avoid secondary nucleation

Strain energy is lower, surface energy higher in nanorod core/shells

 Use surfactants and (some) supersaturation effects to adjust kinetics to grow spheres or nanorods



Hollingsworth, et al. JACS (2008); Manna, et al. JACS (2009).



# Combining phase control, shape control, and heterostructure growth



#### Talapin, et al. Nano Lett (2007).







#### Talapin, et al. Nano Lett (2007).















# Chemical conversion: "Seeded growth" of $Ag_2X$ (X = S, Se, or Te)



# Chemical conversion: "Seeded growth" of $Ag_2X$ (X = S, Se, or Te)



### Chemical conversion: Topotactic transformation of Se to Ag<sub>2</sub>Se





# Chemical conversion: Topotactic transformation of Se to Ag<sub>2</sub>Se



Topotactic
transformation
between
structurally related
single crystals

Minimal
rearrangement of
Se lattice required
to convert to Ag<sub>2</sub>Se



Thursday, August 12, 2010

**``````** 

## Topotactic cation exchange reaction in nanocrystals



#### Alivisatos, et al. Science (2004)



## Topotactic cation exchange reaction in nanocrystals



#### Alivisatos, et al. Science (2004)

















## CdS-Cu<sub>2</sub>S nanorods by cation exchange



#### Alivisatos, et al. JACS (2009)

### Generating heterostructures by partial cation exchange: Segmented nanorods



## CdS-Cu<sub>2</sub>S nanorods by cation exchange



#### Alivisatos, et al. JACS (2009)



## Generating heterostructures by partial cation exchange: Segmented nanorods

Two contributions to energy cost of forming an interface

Strain (θ)

• Chemical  $(\Delta \gamma_{AB})$ 

|    | θ     | Δγ  |
|----|-------|-----|
| Cu | small | > 0 |
| Ag | large | < 0 |

#### Alivisatos, et al. JACS (2009)



## CdS-Cu<sub>2</sub>S nanorods by cation exchange





Using cation exchange to make shapes unrelated to crystal structure



#### Alivisatos, et al. JACS (2010)





#### Ouyang, et al Science (2010)



#### Ouyang, et al Science (2010)

MOLECULAR FOUNDRY



#### Ouyang, et al Science (2010)





#### Lecture I: Fundamentals of nanoparticle synthesis

- Basic apparatus & techniques
- Minimizing polydispersity
- Size control
- Crystal phase control
- Lecture 2: Complex structures
  - Shape control
  - Heterostructures & chemical conversion
  - Oriented attachment





# Oriented attachment of nanocrystals with anisotropic structures



Weller, et al. Angew. Chem. (2002)

 Wurtzite ZnO nanocrystals form
"attached" chains, then single crystalline rods
upon heating

No bulky surfactants means lower kinetic barrier





## Oriented attachment of nanocrystals with anisotropic structures



#### Weller, et al. Angew. Chem. (2002)



## Oriented attachment of nanocrystals with isotropic structures



#### CB Murray, et al JACS (2005)

MOLECULAR FOUNDRY



## Oriented attachment of nanocrystals with isotropic structures



PbSe has rock salt structure – cubic

Oriented attachment
observed along different
axes as a function of
which surfactants are
present



#### CB Murray, et al JACS (2005)



# Oriented attachment of nanocrystals with isotropic structures



PbSe has rock salt structure – cubic

Oriented attachment
observed along different
axes as a function of
which surfactants are
present



Transient symmetry breaking of cuboctohedra can produce a dipole

#### MOLECULAR FOUNDRY

#### CB Murray, et al JACS (2005)

## Combining shape control and oriented attachment



#### CB Murray, et al JACS (2005)

 Onm
Change surfactant to get octahedral PbSe (only 111 facets)

Attach to form zig-zag wires







#### H. Weller, et al Science (2010)

MOLECULAR FOUNDRY







#### H. Weller, et al Science (2010)

MOLECULAR FOUNDRY









MOLECULAR FOUNDRY



### Lecture 2 summary: Complex structures

#### Shape control

- Surface energy of different facets determines lowest energy shape
- Ligand-facet interactions change lowest energy shape AND growth kinetics

#### Heterostructures

Strain and interfacial energy impact achievable morphology

#### Chemical conversion

Post-synthetic conversion provides access to new compositions and morphologies

#### Oriented attachment

Orientation driven by dipoles, attachment eliminates high energy facets





### Lecture 2 summary: Complex structures

#### Shape control

Surface energy of different facets determines lowest energy shape

Ligand-facet interactions change lowest energy shape AND growth kinetics

Nanocrystal morphologies derive from:

Complex interplay between surface, interfacial, and "bulk" free energy

Thermodynamic drivers and kinetic down-selection of growth pathways

Post-synthetic conversion provides access to new compositions and morphologies

Oriented attachment

Orientation driven by dipoles, attachment eliminates high energy facets





- Size-dependent properties & applications
- Nanocrystal assembly and device/systems integration
- Compositional complexity: Doping and ternary/quarternary compositions
- Templated shape control (e.g. inverse micelles)
- Nanocrystal surface chemistry
- Chemical mechanisms and pathways

