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Synthesis strategies for controlled
nucleation and growth of colloidal
uﬁ‘ inorganic nanocrystals
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Government warning:

| work at a National Lab and do not teach classes
for aliving. Therefore, | made a lot of new slides
for this Summer School. Probably, there are some
errors or typos. Failure to check primary sources
before applying formulae could result in confusion
or other mental health problems.
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o Basic apparatus & techniques
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o Size control
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Synthetic apparatus for colloidal
inorganic nanocrystals
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Inorganic nanocrystals

Aror N, —=

Organic
Ligands

2-30 nm

Thermocouple

o Up to~ 350 °C
o Air-free

o Various organic ligands
stabilize during and after

growth Heating Mantle
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R Transmission electron microscopy
A .
e M (TEM) of colloidal nanocrystals

BERKELEY LAB
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R Transmission electron microscopy
A .
e M (TEM) of colloidal nanocrystals
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X-ray diffraction (XRD) of colloidal
" nanocrystals
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X-ray diffraction (XRD) of colloidal
ceree Y nanocrystals
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X-ray diffraction of MgO nanocrystals
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X-ray diffraction (XRD) of colloidal
ceree Y nanocrystals
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X-ray diffraction of MgO nanocrystals
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Optical spectroscopy of semiconductor
cerce) '“\ nanocrystals (Quantum Dots)

size
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Optical spectroscopy of semiconductor
nanocrystals
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—— absorption
—— fluorescence

size

Absorption / PL Intensity (au)

400 500 600 700
Wavelength (nm)
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Optical spectroscopy of semiconductor

~

—— absorption
—— fluorescence

Ass0 2
concentration

Absorption / PL Intensity (au)

>
size
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Workstation for Automated
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Vial Gripper &
Heated Needle

Sampling
Needle

MOLECULAR

8 Low Thermal Analytical
Mass Reactors balance
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Workstation for Automated

1 Nanomaterials Discovery and Analysis
-
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fm High-throughput characterization

CdSe nanocrystal aliquots

Absorption, Emission X-ray diffraction
Size, size distribution, concentration, doping Crystal structure, size, shape
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CdSe and CdTe nanocrystal PL in quartz microplate 96-well X-ray diffraction microplate
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Classical model for colloidal nucleation
and growth
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Supersaturation

originally: LaMer (1950)

review by: Hyeon, et al. Angew. Chem. (2007)
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Classical model for colloidal nucleation
and growth

“burst”
nuclﬁatlon
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[11

Supersaturation

originally: LaMer (1950)

review by: Hyeon, et al. Angew. Chem. (2007)
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Classical model for colloidal nucleation
and growth

“burst”
nuclﬁatlon
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f(rreeere w

growth
[11

Supersaturation

S=1

originally: LaMer (1950)

review by: Hyeon, et al. Angew. Chem. (2007)
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Free energy for formation of a crystal
| from supersaturated growth solution

-~

rfrrrrer

A
Il

AG

4 RT'InS
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Surface Bulk
Energy Energy
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/fm What is the critical supersaturation (S¢)?
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/f% What is the critical supersaturation (S¢)?

27V

© R

o Critical radius must be small
enough for stable nuclei to form
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o Critical radius must be small
enough for stable nuclei to form

o Nucleation rate must exceed
dissolution rate
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Separation of nucleation and growth
coece) Y due to ppt rate dependence on S

. nucleation
-é (ldeaI}:

: [ |

0

S

=

= growth

o

o

nuclei
dissolve

Supersaturation

Wednesday, August 11, 2010



~

Separation of nucleation and growth
coece) Y due to ppt rate dependence on S

Sc .
: nucleation
E (not ideal)
nucleation
(ideal}

growth

precipitation rate

nuclei
dissolve

Supersaturation
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Diffusion controlled growth and the
ceece) Y “focusing” effect

o Arrival rate of monomers goes as r?

o Volume goes as r3

monomer
diffusion dr

dt

originally: Reiss (1951)

review by: Hyeon, et al. Angew. Chem. (2007)
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Diffusion controlled growth and the
ceece) Y “focusing” effect

o Arrival rate of monomers goes as r?

o Volume goes as r3

monomer
diffusion dr o D

dt r

originally: Reiss (1951)

review by: Hyeon, et al. Angew. Chem. (2007)
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Diffusion controlled growth and the
ceece) Y “focusing” effect

o Arrival rate of monomers goes as r?

o Volume goes as r3

monomer
diffusion dr o D

dt r

Size distribution becomes
narrower under diffusion-
controlled growth

originally: Reiss (1951)

review by: Hyeon, et al. Angew. Chem. (2007)
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Gibbs-Thomson effect and Ostwald
cooeen) ! ripening

monomer
diffusion

originally: Ostwald (1901)

review by: Hyeon, et al. Angew. Chem. (2007)
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Gibbs-Thomson effect and Ostwald
ripening
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o Smaller particles have higher chemical
potential due to surface energy

monomer Au e5 2
o [17{VE (o] 3!
originally: Ostwald (1901) MOLECULAR]
y ¥

review by: Hyeon, et al. Angew. Chem. (2007)
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Gibbs-Thomson effect and Ostwald
ripening
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o Smaller particles have higher chemical
potential due to surface energy

¥
r

Al

monomer
diffusion

o Dissolution of small particles, growth
of large particles

originally: Ostwald (1901) MOLECULAR]
y ¥

review by: Hyeon, et al. Angew. Chem. (2007)
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Gibbs-Thomson effect and Ostwald
ripening
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o Smaller particles have higher chemical
potential due to surface energy

¥
r

Al

monomer
diffusion

o Dissolution of small particles, growth
of large particles

Size distribution becomes
broader due to Ostwald ripening

originally: Ostwald (1901) MOLECULAR]
y ¥

review by: Hyeon, et al. Angew. Chem. (2007)
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Diffusion-controlled growth
considering Gibbs-Thomson effect

dr
ol Focusing effect
re
\br ———
0

Ripening effect

o Case of diffusion-
controlled growth with
size-dependent
solubility

o Curve shape is modified
when considering
reaction rates, but
qualitatively holds

Wednesday, August 11, 2010



Competing growth regimes for colloidal
| particles
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Competing growth regimes for colloidal
| particles
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o “Focusing” and Ostwald
ripening can coexist

focusing region

r/rec

review by: Hyeon, et al. Angew. Chem. (2C AT
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Competing growth regimes for colloidal
| particles

small D, high kp

~
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o “Focusing” and Ostwald
ripening can coexist

H

r/rec

review by: Hyeon, et al. Angew. Chem. (20077
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Competing growth regimes for colloidal
| particles

small D, high kp o “Focusing” and Ostwald
ripening can coexist

large D, small kp

~

rfrrrrer

I

r/rec

review by: Hyeon, et al. Angew. Chem. (2C AT
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Competing growth regimes for colloidal
particles

small D, high kp o “Focusing” and Ostwald
ripening can coexist

o Diffusion-limited growth
arge 9, small Ao favors focusing
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review by: Hyeon, et al. Angew. Chem. (2C AT
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Competing growth regimes for colloidal
| particles

small D, high kp o “Focusing” and Ostwald
ripening can coexist

0 o Diffusion-limited growth
large D, small X, favors focusing
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r/rec

dr
dt

high [monomer]

review by: Hyeon, et al. Angew. Chem. (2C AT
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Competing growth regimes for colloidal
| particles

small D, high kp o “Focusing” and Ostwald
ripening can coexist

0 o Diffusion-limited growth
large D, small X, favors focusing
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I

r/rec

dr
dt

high [monomer]

review by: Hyeon, et al. Angew. Chem. (2C AT
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Competing growth regimes for colloidal
particles

small D, high kp o “Focusing” and Ostwald
ripening can coexist

o Diffusion-limited growth
arge 9, small Ao favors focusing

-~

A
Il

rfrrrrer

I

o High supersaturation
favors focusing

r/rec
dr

dt

high [monomer]

MOLECULAR

review by: Hyeon, et al. Angew. Chem. (2C AT
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Control strategies: Achieve burst
ceece) Y nucleation by “hot injection”

CdSe via “hot injection”

6
Aror N, —= 6
Cd(CHy)z + /\(\/)f
P

} | (rop-se

350 °C Se

Thermocouple

Q"

Heating Mantle
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Control strategies: “Delayed” burst
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nucleation

Iron Oxide via “delayed
nucleation” Fe(COOR)s A > monomer

nucleation

Precursor

“\\\\\\\\\\N J”dddigﬁ_“;;;“q
rys

Concentration

Time

Hyeon, et al. Acc. Chem. Res. (2006)
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In situ monitoring of monomer

~

Iron Oxide via “delayed

nucleation”
E 12 :_I FI L | L | L | L | L T T | L
o E : Abs due to
=i ik nucleation
S I 4 crystals
= o) -
BN /\bs due t S
< o06F s due to =
E monomer § L
0.4 Ly 2
.. i I ]
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0 e ]
_I | I I | | I I | | L1 1 1 | L1 11 | L1 1 1 | L 1 1 1 | | I_
0 500 1000 1500 2000 2500 3000 3500
Time (s)
Alivisatos, et al. . Am. Chem. Soc. (2006) Z
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Control strategies: “Focusing” by
1 multiple injections

CdSe

InAs

Ave. Size (nm)
¥
-+

T

]
W

(wu) 3zZ1I§ *3AY

Focusing by multiple
hot injections
. 1 ) LN -
e ¢ °
Yar® ® :“.':
RN TR
99 e, o¥y :.O
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Control strategies: “Focusing” by

-~

. CdSe InAs ) Focusing by multiple
hot injections
_ T/‘\Qr’,—“. ” ";:‘. - ”.;:‘."._ ‘v«~‘
E r (<b ':'6 v « .25 m
£ : * 4 ¢ ¢
§ | 1 % 34 P :.:: &
G | 35 eretielnges
Z 2 <3337 %220,
SR R O
r T | 1 & % |
. | BIFIH A
! 25 £ Alivisatos, et al. JACS (1998)
- )
144 + 2
: || 3
a F20 &
=
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6 4 r ' r — | oy, RS
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0

Time (minutes) Time (minutes)
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Control strategies: “Focusing” by
multiple injections

CdSe InAs
o1 r4
z l il
£
g 41
|
@ v 3
>
<
T - T e—
'
\ =25
S ad
> t
Y]
= F20
2
9
6 A | k 1 T
0 80 180 0 100 200

Time (minutes)

Time (minutes)

Focusing by multiple
hot injections

BUT... growth rates
are orders of
magnitudes slower
than the expected

diffusion limit QLJ
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Sustained focusing without multiple
coece) Y injections

170
TOPSe:Cd 1 Z
—— 0.5 460 =
N 1 3
—@— 2 ] c3|>
—<$— 4 5 o0 <
—|— 8 |
oy dao
3 4 5
Diameter (nm)
E. Chan, et al

Nano Lett (2010).
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Sustained focusing without multiple
coece) Y injections

_: 70 Cd(COOR)- < CdO
TOPSe:Cd I 2
—0— 0.5 4160 2
N 1 3
—@— 2 ] c3|>
< 4 . 50 <
—— 8 |
P e | V. [y
3 4 5
Diameter (nm)
E. Chan, et al

Nano Lett (2010).
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Sustained focusing without multiple
Injections
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Cd(COOR)2. == CdO

~
-

TOPSe:Cd

) D
O O
(Aow) wymy

cn _' | I I [ | I L1 1 1 I L1 1 1 I L1
AN
-

Diameter (nm)

Focusing by incorporating a

E. Chan, et al monomer reservoir
Nano Lett (2010).
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Outline

olLecture I. Fundamentals of nanoparticle synthesis

o Basic apparatus & techniques

© Minimizing polydispersity

©Size control

o Crystal phase control
oLecture 2: Complex structures

o Shape control

o Heterostructures & chemical conversion
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frequency

radius (nm)

Bawendi, et al. J. Am. Chem. Soc. (1993)
Talapin, Weller, et al. J. Phys. Chem. B (2001)
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o Growth accompanied
by “defocusing”

frequency

radius (nm)

Bawendi, et al. J. Am. Chem. Soc. (1993)
Talapin, Weller, et al. J. Phys. Chem. B (2001)
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frequency
absorbance

350 450 550 650
radius (nm) wavelength (nm)

Bawendi, et al. J. Am. Chem. Soc. (1993)
Talapin, Weller, et al. J. Phys. Chem. B (2001)

o Growth accompanied
by “defocusing”

o Monodisperse
particles isolated by
size-selective
precipitation
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o Growth accompanied
by “defocusing”

o Monodisperse
particles isolated by
size-selective
precipitation

frequency
absorbance

High yield overall,
but small yield of
monodisperse
particles.

350 450 550 650
radius (nm) wavelength (nm)

Bawendi, et al. J. Am. Chem. Soc. (1993)
Talapin, Weller, et al. J. Phys. Chem. B (2001)
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frequency

radius (nm)
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Talapin, Weller, et al. J. Phys. Chem. B (2001)
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Arresting growth during focusing

_ o During focusing, size
= l increases very rapidly
S 47
)
s |V o Makes size
c=>>’ < reproducibility
. challenging
O
0}
-
e
radius (nm) S S T
Time (minutes) MOLECULAR
FOUNDRY '_ Qq

0

Talapin, Weller, et al. J. Phys. Chem. B (2001)
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Arresting growth during focusing

Ave. Size (nm)
§ N
—
<

frequency

Std.Dev (%)

radius (nm) S S T
Time (minutes)

Talapin, Weller, et al. J. Phys. Chem. B (2001)

o During focusing, size
increases very rapidly

o Makes size
reproducibility
challenging

o Overall yield is
substantially reduced
because reaction is
incomplete

MOLECULAR
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1 Controlling nucleation to control size
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Controlling nucleation to control size

o Soon after nucleation, number of
particles nearly constant in time

20 —

15—/}‘t’,_f:‘ .

" /.\_,\' " ’ : :

[Particle] (uM)

0 500 1000 1500 2000
Time (s)

MOLECULAR
FOUNDRY I
)
2|
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BERKELEY LAB

Controlling nucleation to control size

o Soon after nucleation, number of
particles nearly constant in time

© When yield is consistent, can use

number of nuclei to tune size

ad T

15—/}‘t’,_f:‘ .

20 —
<
)
o
T
[
Q.
bd 5_
0

500

1000 1500

Time (s)

2000

MOLECULAR
FOUNDRY I
)
2|
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Number of nuclei can be controlled by
coece) Y supply rate of monomers

QVin QRT

N
Ty D~Clq

N - total number of
particles nucleated
Q - monomer supply rate

Sugimoto (1991, 2000).

Wednesday, August 11, 2010



Number of nuclei can be controlled by
supply rate of monomers
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Particle conc. vs reaction rate

20} © Lerooracd
- 1.72
N va QRT - X 1.80
0.¢ X - -
— ' 15
v D~Cloq s %' |
> »% "jgjf
S *5 10f
N - total number of S % %F
particles nucleated <, =
Q - monomer supply rate : i -
F K
O- 1 1 1 | | 1 1 |
0 10 20 30 40

Q, (10 mol L)

Sugimoto (1991, 2000). Precursor reaction rate
E. Chan, J. Owen, unpublished.
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R Number of nuclei can be controlled by
A . _
reaction conditions

log [Particle]
55 -4.9 -4.3 -3.7

B -3.5

AN
(@)
[810148d] BO|

MOLECULAR

FOUNDRY I S
L0 38
AW ol

E. Chan, et al
Nano Lett (2010).

0
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Number of nuclei can be controlled by
A . S
reaction conditions

log[Particle] = log knuc + a log[Cd-OLA]o+ b log[TOPSe]o

log [Particle]
55 -4.9 -4.3 -3.7

- 3.9

AN
(@)
[a1011Ed] 60|

MOLECULAR
FOUNDRY Jdf S
L2135
4 Py

E. Chan, et al
Nano Lett (2010).

0
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Number of nuclei can be controlled by
A . S
ceree 1 reaction conditions

log[Particle] = log kuuc + a log[Cd-OLA]o+ b log[ TOPSe]o

log [Particle]

[Particle]l = knuc [Cd-OLA)y* [TOPSe]o’ ey
/ | - -3.5
10g knue = -2.27(6) b
~ 4.0
a=0.94(4) 3
b =0.58(3) F45 @
R2=0.990 o
E. Chan, et al
Nano Lett (2010).
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Number of nuclei does predict final
A .
cerce) ! nanocrystal size

Yield | Limiting Reagent|,
Particle]

NCdSe/partz'cle —

E. Chan, et al
Nano Lett (2010).
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Number of nuclei does predict final
A .
cerce) ! nanocrystal size

Yield | Limiting Reagent|,

N e/particle — :
ey peite Particle]
1
s
. 6Vm N CdSe / particle
dmadel —
T N,
E. Chan, et al

Nano Lett (2010).
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Number of nuclei does predict final
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| siz
nanocrystal size

Yield | Limiting Reagent|,
NC’dSe/partz'cle — 5 4

Particle] \-I
6Vm N CdSe | particle
T N,

Diam. (nm)

3
i

6

dmodel —

T
&)

I
N
(wu) Jejowel

RMS error =0.15 nm

100

E. Chan, et al
Nano Lett (2010).
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coeee] ﬂ Fundamentals of nanoparticle synthesis

oBasic apparatus & techniques

o Hot solution with surfactant, precursors

o TEM complemented by optical spectroscopy and XRD
oMinimizing polydispersity

o Separation of nucleation and growth

o Focusing size distribution by diffusion-controlled growth, high
supersaturation

oSize control
o Post-synthetic separation or arrested growth possible, not ideal

o Controlling number of particles nucleated most effective

MOLECULAR
FOUNDRY [ l
')
2|

3
]
Jo
iy

0

Wednesday, August 11, 2010



~

A

f(reeeere ‘m

Outline

olLecture I. Fundamentals of nanoparticle synthesis

o Basic apparatus & techniques
© Minimizing polydispersity
o Size control

oCrystal phase control

olecture 2: Complex structures

o Shape control

o Heterostructures & chemical conversion
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Single component phase transitions

o Phase diagram indicates
equilibrium (lowest free
energy) phase at each
temperature and pressure

o Lines between phases
represent first order phase
transitions

Pressure (atm)

0 197 5 216.6 304.25

Temperature (K) NOLECULAR]
FOUNDRY / 22'.
< =
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Each material may exist in multiple
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crystal phases
ystalp

o In general, multiple solid

180

phases exist with
different crystal l
1500 l
structures i
Q 2w
o Temperature (and o
pressure) are two 2 0
. 900 .
parameters which g | coesite
influence the crystal Q.
£ 40
phase of nanocrystals @

300

R PP P [T ()
50 60 70 a0 90 100

Pressure (kbar)
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CdTe: Wurtzite vs. Zinc Blende

BERKELEY LAB

o Both are tetrahedrally-
bonded, 4-coordinate

_ _ _ wurtzite:
o Differ only in stacking

(hcp vs. fco)

o Wurtzite stable at higher
temperatures

zinc blende:

3 l
3 \
. \

Wednesday, August 11, 2010



A
Il

/\
rfrrrrer

Controlling phase with temperature

300 °C
i
L
T
|y
T
Fa'eN -
3 285 _ : B =&
¥ T o E — "_-:__;:—
- S S R AL
m ]
=
C |
-
O
O
= 8 -
el -
i
| |
20 30 40 50

2 Theta (degree)

Peng, et al Chem. Mater. (2003).
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| energy - Implications for phase control

4 RTInS
AG = Amrey — §7T7“3 V,:
Surface Bulk

Energy Energy

o Surface energy (y) varies
with crystal phase

o Surface energy
increasingly important at
small sizes

o Low y phases become
more stable at small sizes
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20

AH (kJ/mol)
S

an
I

| | I |
0 02 04 06 08 10 1.2

Surface area (10* m?/mol)

Navrotsky, et al. J. Chem. Thermo. (2007).
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! Phase stability of TiO; versus size

o Surface enthalpy
20 measured by calorimetry

—
LN
I

anatase
brookite

AH (kJ/mol)
S

an

I |
o6 08 10 1.2

| |
0 02 04

Surface area (10* m?/mol)

Navrotsky, et al. J. Chem. Thermo. (2007).
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AH (kJ/mol)
S

an

anatase

0 0.2

0.4

0.6
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Surface area (10* m?/mol)

Navrotsky, et al. J. Chem. Thermo. (2007).

o Surface enthalpy
measured by calorimetry

o Stable phase depends on
Size

o rutile in bulk, then
brookite, and anatase at
small sizes
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Phase stability of TiO, versus size

~100 nm ~15 nm o Surface enthalpy
20 l l measured by calorimetry
rutile [brookite anatase
15 F o Stable phase depends on

size

o rutile in bulk, then
brookite, and anatase at
small sizes

AH (kJ/mol)
S

an

08 10 1.2

0 02 04 06 o Nanocrystals are

Surface area (10* m?/mol) commonly anatase,
some brookite

Navrotsky, et al. J. Chem. Thermo. (2007).
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Size-dependent phase transition:
ceoce) '“\ crystallization of amorphous GeTe

O O
N B~ O

g BT

2-Theta (deg)
A B OO O
o)} (00) o

I
N

50 100 150 200 250 300 350 400
Temperature (degC)

M. A. Caldwell, et al.
J. Mater. Chem. (2010)
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Size-dependent phase transition:
crystallization of amorphous GeTe
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o Synthesize size-selected
amorphous GeTe
nanoparticles

O O
N B~ O

g BT

2-Theta (deg)
H (o)'l 9]

oo

o Use XRD while heating to
observe crystallization

N
(@)

I
N

50 100 150 200 250 300 350 400
Temperature (degC)

M. A. Caldwell, et al.
J. Mater. Chem. (2010)
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Size-dependent phase transition:
/fm crystallization of amorphous GeTe

56 o Synthesize size-selected
= ‘ _ amorphous GeTe
O 59 0.90 -
§50 T ' §§§ nanoparticles
= 48 065
™ 46 0.60 o Use XRD while heating to

0.55
0.50

observe crystallization

I
N

50 100 150 200 250 300 350 400
Temperature (degC)

s ] o Size-dependence implies
@ 360+ amorphous state

- .

§ 320 - becomes relatively more
£ oo stable at small sizes

E 180-

h -

c

S 240-

5

N

E 200 -

S

o 160 -+

- M. A. Caldwell, et al. Fé’ufﬁ)g
175 200 225 250 275 300 325 350 A0 (152
Average Biameter (nm) J. Mater. Chem. (2010) —*4
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Ligands can modify surface energy and
coece) '“\ thereby relative phase stability

4 RTInS
AG = Amréy — §7TT3 V,:

Surface Bulk
Energy Energy
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Ligands can modify surface energy and
coece) '“\ thereby relative phase stability

4 RTInS
AG = Amréy — §7TTS V,:

Surface Bulk
Energy Energy

AGsurf e (fYaAa + /ybAB)
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Ligands can modify surface energy and
coece) '“\ thereby relative phase stability

o Reduction in surface

4 RT1In S energy by ligands is
AG = 47TT27 - §7TT3 v specific to structure of
" each facet
Surface Bulk
Energy Energy

o Different phases present
different facets and can
be selectively stabilized
by a ligand

AGsurf e (fYaAa + /YbAB)
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OA, 300°C ODPA, 300°C
3: - L
O
,££2 | |
- OA, 240°C ODPA, 240°C
-
O
O L
20 30 40 50 20 30 40 50

2 Theta (degree)

Peng, et al Chem. Mater. (2003).
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OA, 300°C ODPA, 300°C
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Peng, et al Chem. Mater. (2003).
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OA, 300°C ODPA, 300°C

= [ l Temperature and
© :
Py | | ligand effects
-E OA., 240°C ODPA, 240°C combine to
8 determine phase
O L

20 30 40 50 20 30 40 50

2 Theta (degree)

Peng, et al Chem. Mater. (2003).
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Rare-earth doped NaYF4 crystal phase

~

A

frerreeer ‘m

control

Na(C2FsCOO0)s + Y(TFA)s . Yb(TFA)3 + Er(TFA)3

330 °C

Crystal structures from
Mai et al. J. Am. Chem. Soc.,
2006, 128 (19), 6426-6436

a-NaYFa: Yb, Er B-NaYF4: Yb, Er voLECUAT
cubic (fluorite) hexagonal (gagarinite) Y @
weak upconversion strong upconversion —T
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Effect of oleic acid on NaYF4 crystal
<2 phase

Intensity (au)

B B 0
a B o Bﬁa
| S I I
30 40 50 60
20 (°)

* NaF byproduct

Wednesday, August 11, 2010



A
Il

frerreeer ‘

| phase

Effect of oleic acid on NaYF4 crystal

X-ray diffraction

IV NI

Intensity (au)

* NaF byproduct

Fraction p-phase (%)

f-NaYF4fraction from
Rietveld refinement

OLA:Re = 0.04

\ \
'\ NT [ F T r [ r 1 r[ T
—-00 -4 -2 0 2

log (Oleic acid/Rare Earth)

Oleic acid preferentially

FOUNDRY

Stabilizes the MOLECULAR1 =
cubic (x) phase Y %
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Effect of oleic acid on NaYF4 crystal

frreerer ‘|/|\| phase
X-ray diffraction B-NaYF4fraction from
. . Rietveld refinement
OLA:RE
I D AN U 2o
® pB/(a+ X Upconversion Intensit
e N AN M 1.0 Ii) ( . B) P y §
—_ AN\ X @
,M\__j\\_/\/\“/\\ X _ D,
. 0.5 \m/ 100 1o— ¢ ? z\ - g
= g I B
W 0.1 S - %
= = 50 - _ 9@
%) 10” S S
g g - . -3
= 10° L 1 . . X 3
U 0 N WL B B B B IR L m
0 ~00 4 -2 0 2 =
log (Oleic Acid/Rare Earth)
0
o B b, B o ; . }
< o | | ol Oleic acid preferentially
30 40 50 60 stabilizes the yg;g?yg
o) - ::q
20 (°) cubic (o) phase 215133
* NaF byproduct
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cooee) ﬂ Crystal phase control in summary

BERKELEY LAB

o Temperature

o Bulk phase diagrams provide guidance, but exclude surface energy
contributions

oSize
o Phases with lower surface energy (y) favored at smaller sizes
oLigands

o Reduce surface energy of specific facets, can stabilize specific phases

MOLECULAR
FOUNDRY [ l
')
2|

ﬁ

R
2o
iy

0
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