ICMR Summer School on Novel Superconductors

M. Brian Maple Department of Physics University of California, San Diego

Lecture 1 (Tuesday, 8/11/09): Interplay between superconductivity and magnetism in f-electron systems (conventional superconductivity)

Lecture 2 (Wednesday, 8/12/09): Unconventional superconductivity, magnetic and charge order, and quantum criticality in heavy fermion f-electron materials (unconventional superconductivity)

- f-electron materials multinary compounds and alloys containing rare earth (R) and actinide (A) ions with partially-filled f-electron shells and localized magnetic moments
- Localized magnetic moments of R and A ions interact with the momenta and spins of the conduction electrons
- Certain R ions (Ce, Pr, Sm, Eu, Tm, Yb) and A ions exhibit valence instabilities; i.e., localized f-states hybridize with conduction electron states
- Competing interactions readily "tuned" by x, P, H ("knobs")
- Wide variety of correlated electron phenomena
 - Rich and complex phase diagrams in the hyperspace of T, x, P, H
- Situations involving competing interactions
 - One phenomenon survives at the expense of another
 - Interactions conspire to produce a new phenomenon (e.g., sinusoidallymodulated magnetic state that coexists with SC in FM superconductors)
- Brief survey point of view of experimentalist
- Materials driven physics!
 - Materials reservoir of new electronic states and phenomena
 - Opened up new research directions in condensed matter physics

f-electron materials

Examples

•	Destruction of SC at $T_{c2} < T_{c1}$ (reentrant SC) due to Kondo effect	&
•	Kondo effect (impurities and lattice)	&
•	Destruction of SC at $T_{c2} < T_{c1}$ (reentrant SC) due to FM order	&
•	Occurrence of sinusoidally modulated magnetic state (λ ~ 100 Å) that coexists with SC in FM superconductors	Ŀ
•	Coexistence of SC & AFM order	&
•	Coexistence of SC & itinerant FM	&
•	Magnetic field induced SC (MFIS)	&
•	Heavy fermion compounds (m [*] ~ 10^2 m_{e})	&
•	Unconventional SC in heavy fermion compounds	&
	 Electron pairing with L > 0, nodes in SCing energy gap, magnetic pairing mechanism 	
•	Occurrence of SC near magnetic QCPs accessed by pressure	&
•	NFL behavior associated with QCPs	&
•	Heavy fermion behavior and SC in PrOs ₄ Sb ₁₂ , possibly due to electric	
	quadruple, rather than magnetic dipole, fluctuations	&
	& Lecture 1; & Lecture	

2

Lecture 1:

Interplay between superconductivity and magnetism in f-electron systems

Outline:

- (1) f-electron materials
- (2) Conventional superconductivity
- (3) Magnetic interactions in superconductors
- (4) Paramagnetic impurities in superconductors
- (5) Magnetic field induced superconductivity (MFIS)
- (6) Magnetic ordering via the RKKY interaction
- (7) Magnetically ordered superconductors

Lecture 2:

Unconventional superconductivity, magnetic and charge order, and quantum criticality in heavy fermion f-electron materials

Outline:

- (1) Unconventional superconductivity
- (2) Heavy fermion compounds
- (3) Superconductivity in heavy fermion compounds
- (4) Competition between Kondo effect and RKKY interaction
- (5) Non-Fermi liquid (NFL) behavior and quantum criticality
- (6) SC near antiferromagnetic (AFM) quantum critical points (QCPs) under pressure
- (7) Coexistence of SC and itinerant ferromagnetism
- (8) Heavy fermion behavior and unconventional SC in PrOs₄Sb₁₂; evidence for electron pairing via electric quadrupole interactions

Local moment paramagnetism and magnetic order

$$\begin{split} \mathbf{M} &= -g_J \mu_B \mathbf{J} \\ \mathbf{J} &= \mathbf{L} + \mathbf{S} \quad (\text{determined from Hund's rules}) \\ g_J &= 1 + [J(J+1) + S(S+1) - L(L+1)]/2J(J+1) \quad \text{Landé g-factor} \\ \mu_B &= e\hbar/2mc = 0.927 \times 10^{-20} \text{ erg/gauss} \\ \mathbf{E} &= m_J g_J \mu_B H; \ m_J &= J, \ J-1, \ \dots, \ -J \quad (2J+1 \text{ equally spaced levels}) \\ \mathbf{M} &= Ng_J J \mu_B B_J(x); \ x &= g_J J \mu_B H/k_B T \\ \mathbf{B}_J(x) &= [(2J+1)/2J] \text{ctnh}[(2J+1)x/2J] - (1/2J) \text{ctnh}(x/2J) \quad \text{Brillouin function} \end{split}$$

Local moment paramagnetism: magnetizaation

S, L, J for lanthanide ion determined from Hund's rules Hund's rules:

- Lanthanide ion with configuration 4fn
- 4f electron: I = 3, s = 1/2
- S = maximum value $\Sigma(s_z)_i$
- L = maximum value $\Sigma(I_z)_i$ (subject to Pauli principle)
- J = |L-S| 4f shell <u>less</u> than half filled (n < 7)
- J = L+S 4f shell <u>more</u> than half filled ($n \ge 7$)
- e.g., Ce^{3+} (4f¹) S = 1/2, L = 3, J = |L-S| = 5/2

 $Pr^{3+}(4f^2) S = 1, L = 5, J = |L-S| = 4$

Gd³⁺ (4f⁷) S = 7/2, L = 0, J = L+S = 7/2 (so-called "S-state" ion)

 $Yb^{3+} (4f^{13}) S = 1/2, L = 3, J = L+S = 7/2$ (one f-"hole")

2J+1 degeneracy of Hund's rule ground state multiplet can be lifted by crystalline electric field (CEF) \Rightarrow CEF ground and excited states

Local moment magnetic ordering

 $\chi(T) = N \mu_{eff}^{2/3} k_{B}(T - \theta)$

Curie-Weiss law

 θ – Curie-Weiss temperature

Ferromagnetic order: $\theta \approx \theta_f$ (Curie temperature)Antiferromagnetic order: $\theta \approx -T_N$ (Néel temperature)

Conventional superconductivity

Conventional superconductivity

Conventional superconductivity

Type II superconductivity (compounds, alloys)

Origin

Theory – Ginzburg (57) Experiments – Matthias, Suhl, Corenzwit (58)

Background (57-76)

Experiments

- Binary and pseudobinary R impurity systems; e.g., La_{1-x}R_x, Y_{1-x}R_xOs₂
- Rapid depression of T_c with x ($x_{cr} \sim 1$ at% for $La_{1-x}Gd_x$)
- Results provocative, inconclusive wrt coexistence of two phenomena (chemical clustering, short-range or "glassy" magnetic order)

Theory

- Striking predictions, inapplicable to systems then under investigation
- Spin-off
 - Understanding of effects of paramagnetic impurities on superconductivity CEF, Kondo effect, LSF, etc.
- Revival (~76)

Experiments – Binary, ternary and quaternary R and U compounds ⇒ new, unusual physical effects and phenomena *Theory* – Intense activity

Matthias, Suhl, Corenzwit (58) —

• $T_c(x)$ for $La_{1-x}R_x$ R = Gd: $T_c(x) \rightarrow 0$ K for $x \approx 1$ at.% • Depression of T_c for x=1 at.%, - $\Delta T_c = T_{co} - T_c$, correlates with S of R solute

Herring (58); Suhl & Matthias (59) — Exchange interaction: $H_{int} = -2(g_J - 1)JJ \cdot s$ $\Delta T_c \propto J^2(g_J - 1)^2 J(J+1)$; deGennes factor = $(g_J - 1)^2 J(J+1)$

Anomalous depression of T_c for $Ce \Rightarrow$ hybridization of Ce localized 4f and itinerant electron states $\Rightarrow J \sim -\langle V_{kf}^2 \rangle / E_f \langle 0 \Rightarrow$ Kondo effect <u>La</u>Ce: Sugawara, Eguchi (66); (LaCe)Al₂: Maple, Fisk (68)

Pair breaking \Rightarrow rapid suppression of SCTwo cases:J > 0 (ferromagnetic)J < 0 (antiferromagnetic)

►
$$5 > 0$$
 (terromagnetic)
 $T_c/T_c = Un(\ll/d_{cr})$ Abrikosov's Gor'kov (AG-1960)
 $\ll - pair breaking parameter$
 $\alpha = T_{cx}^{-1} = \pi^{-1} n N(0) f^2(g_{J}-1)^8 J(J+1)$
 $d_{cr} = k_B T_c / 4\pi M$ (In $M = 0.57721 - Exlers' const.$)
Explicitly -
 $ln(T_c/T_c) = \Psi(\frac{1}{2}) - \Psi(\frac{1}{2} + 0.14 - \frac{\ll T_c}{\omega_{cr}T_c})$
 $\Psi - digamma function$
Limit $\alpha \rightarrow 0 -$
 $T_c/T_c = 1 - 0.691(\ll/d_{cr}) = 1 - 0.691(n/M_{cr})$

Other predictions –

$$\Delta C/AC_o = Vn (T_c/T_c).$$

deviates from BCS law of corresponding
states ($AC/AC_o = T_c/T_c$)
Gapless SC $\Delta < t = \Omega$
 $\Omega \rightarrow 0$ faster than $\Delta \rightarrow 0$ with α

Gapless superconductivity

 $La_{1-x}Gd_xAl_2$; T_c vs x phase boundary

"Gapless" superconductivity Woolf, Reif (65) - tunneling $Pb_{1-x}Gd_x$ Finnemore et al. (65) - specific heat $La_{1-x}Gd_x$ M. B. Maple (68)

 $La_{1-x}Gd_xAl_2$; specific heat jump vs T_c

W. R. Decker, D. K. Finnemore (68) C. A. Luengo, M. B. Maple (73) Kondo effect in superconductors

SCing metal containing paramagnetic impurities (spin S)

AFM exchange interaction

 $H_{ex} = -2JS \cdot s$ with J < 0

- Formation of many body singlet state below T_{K}

 $T_{K} \sim T_{F} exp(-1/N(E_{F})|J|) \qquad T_{K} \rightarrow effective \ T_{F}$

<u>Normal State</u>

- T > T_K: Local moment behavior $\chi(T) \sim N\mu_{eff}^2/3k_B(T-\theta)$ where $\theta \sim -3T_K$

 $\rho(T) \sim -InT$ ("resistivity minimum")

- T << T_K: Many body singlet Nonmagnetic heavy Fermi liquid (FL) $\chi(T) \propto \gamma(T) = C(T)/T \sim \text{const.}$ $\rho(T) \approx \rho(0)[1-(T/T_K)^2]$

<u>Superconducting state</u>

Competition between:

(1) Singlet spin paired ($k\uparrow$,- $k\downarrow$) SCing state ($E_{SC} \sim k_B T_c$); (2) Kondo many body singlet state ($E_K \sim k_B T_K$)

 $- T_{K} \ll T_{co}$: Reentrant $T_{c}(x)$ curve!

– $T_K >> T_{co}$: Exponential-like depression of T_c with x

 $- T_{\kappa} \approx T_{co}$: Maximum in initial rate of depression of T_{c}

Theory: Müller-Hartmann, Zittartz (70-71); Zuckermann (68): Ludwig, Zuckermann (71)

To / To = Un (aldor) $\alpha/\alpha_{cr} = nB\left\{\frac{\pi^{2}S(S+1)}{\ln^{2}(T/T_{k}) + \pi^{2}S(S+1)}\right\}$ Müller-Hartmann & Zittartz (MHZ-1971) Other predictions -ACIAC vs To ITo deviates from both BCS law of corresponding states & A& theory Bound state in energy gap

Kondo effect in $La_{1-x}Ce_xAI_2$: electrical resistivity

Magnetic scattering "Kondo" contribution to electrical resistivity: $\Delta\rho(T) = \rho(x,T) - \rho(0,T)$

Maple, Fisk (68)

Kondo effect in $La_{1-x}Ce_xAI_2$: specific heat

S. D. Bader, N. E. Phillips, M. B. Maple, C. A. Luengo (75)

Kondo effect in La_{1-x}Ce_xAl₂: magnetic susceptibility

(a) M. B. Maple (69)
(b) W. Felsch, K. Winzer, G. v. Minnigerode (75)

Kondo effect in $La_{1-x}Ce_xAI_2$: reentrant T_c vs x curve

Kondo effect in $La_{1-x}Ce_xAI_2$: specific heat jump vs T_c

- C. A. Luengo, M. B. Maple, W. A. Fertig (72)
- H. Armbrüster, F. Steglich (73)
- S. D. Bader, N. E. Phillips, M. B. Maple, C. A. Luengo (73)

Kondo effect in $Th_{1-x}U_x$: electrical resistivity

• Th_{1-x}U_x: conventional Kondo effect (Fermi liquid - low T) $\Box \Delta \gamma \approx 270 \text{ mJ/mol U-K}^2$

 $\Box \Delta \rho(T) = \rho_0 [1 - (T/T_K)^2]; T_K \approx 100 \text{ K}$

Th_{1-x}U_x: □ $\chi(T) = C/(T-\theta)$ □ $\theta \approx -3 T_K$ • C = Nµ_{eff}²/3k_B

• Peak in thermoelectric power $\Rightarrow T_{K} \approx 100 \text{ K}$

M. B. Maple et al. (70)

Kondo effect in $Th_{1-x}U_x$: exponential T_c vs x curve

Comparison of T_c vs x curves of $Th_{1-x}U_x$, $AI_{1-x}Mn_x$, $Th_{1-x}Ce_x$

Kondo effect in $Th_{1-x}U_x$: specific heat jump vs T_c

Comparison of $\Delta C/\Delta C_o$ vs T_c/T_{co} curves of Th_{1-x}U_x, Al_{1-x}Mn_x, Th_{1-x}Ce_x

 $T_c \ll T_K$: Conforms to BCS law of corresponding states $\Delta C/\Delta C_o = T_c/T_{co}$

- (O) C. A. Luengo, J. M. Cotignola, J. Sereni, A. R. Sweedler, M. B. Maple, J. G. Huber (72)
- (•) H. L. Watson, D. T. Peterson, D. K. Finnemore (73)
- (□) D. L. Martin (61)
- (**I**) F. W. Smith (72)
- (▲) C. W. Dempesy (70)

- |J| & T_K increase with P \Rightarrow T_K/T_{co} increases with P from << 1 to >> 1 through T_K/T_{co} \approx 1 at ~15 kbar
 - \Rightarrow maximum in ΔT_c at ~15 kbar
- Analogue of Ce γ - ∞ transition
- Maple, Wittig, Kim (69)

Demagnetization of Ce impurities in $(La_{1-y}Th_y)_{1-x}Ce_x$

Huber, Fertig, Maple (72)

Magnetic field induced superconductivity (MFIS)

Origin of the upper critical field H_{c2}

(1) $\frac{e}{mc}(\underline{R},\underline{A}) = \frac{e\hbar}{mc}(\underline{k},\underline{A}) \longrightarrow H_{c}^{*}$ (1) ORBITAL CRITICAL FIELD H.* (2) -M.H = - gug (3.H) -+ Hp H = 0 /21 = 0 = hc/2e (2) PARAMAGNETIC LIMITING FIELD Hp normal state $F_n(H) = F_n(0) - \frac{1}{2} \chi_H^{\alpha}$ superconducting state $F_{s}(H) = F_{s}(0) - \frac{1}{2} \chi_{s} H^{2}$ first order transition from superconducting to normal state when $F_n(H_p) - F(H_p) = 0$ = [F(0) - F(0)] - 1/2 (12-10) H = 1 N(0) A - 1 (X - N) Hp

Origin of the upper critical field H_{c2}

Magnetic field induced superconductivity

Magnetic field induced superconductivity

Magnetic field induced superconductivity

 ϕ . Fisher et al. (83)

Magnetic ordering via RKKY interaction

Magnetic ordering via RKKY interaction

Magnetically ordered superconductors

- <u>Superconducting ternary R Compounds (ordered R sublattice)</u>
- RMo_6S_8 Fischer, Treyvaud, Chevrel, Sergent (75) Shelton, McCallum, Adrian (76) $- RMo_6Se_8$ $- RRh_4B_4$ Matthias, Corenzwit, Vandenberg, Barz (77) Antiferromagnetic superconductors Coexistence of SC & AFM $- RMo_6Se_8 R = Gd, Tb, Er UCSD (77)$ $- RMo_6S_8 = R=Gd, Tb, Dy, Er U. Geneva (77)$ $- RRh_{a}B_{a}$ R= Nd,Sm,Tm UCSD (79) $- RNi_2B_2C$ Nagarajan et al. (94); Cava et al. (94) – RNi₂B₂C (single crystals) *Canfield et al. (94)*
- <u>Ferromagnetic superconductors</u>

Destruction of SC by onset of FM at $T_{c2} \sim \theta_C < T_{c1}$ SC-FM interactions – sinusoidally-modulated magnetic state ($\lambda \sim 100$ Å) that coexists with SC near T_{c2}

 $\begin{array}{ll} & - \ \text{Er} \text{Rh}_4 \text{B}_4 & \textit{UCSD} \ \textit{(77)} \\ & - \ \text{Ho} \text{Mo}_6 \text{S}_8 & \textit{U. Geneva} \ \textit{(77)} \\ & - \ \text{Er} \text{Rh}_{1.1} \text{Sn}_{3.6} & \textit{AT&T, UCSD, BNL} \ \textit{(80)} \end{array}$

RRh₄B₄ crystal structure

Magnetic Superconductor RRh₄B₄

Two weakly interacting subsystems: RhB "molecular units" or clusters \rightarrow SC R magnetic moments \rightarrow magnetic order Comparable values of T_c and T_M

Superconducting and magnetic ordering temperatures of RRh₄B₄ compounds

After M. B. Maple, H. C. Hamaker, L. D. Woolf (82)
B. T. Matthias, E. Corenzwit, J. M. Vandenberg, H. Barz (77)
* Ce, Pr – T. Ooyama, K. Kumagai, J. Nakajima, M. Shimotomai (87)

$H_{c2}(T)$ of RRh_4B_4 magnetic superconductors

Magnetic superconductor NdRh₄B₄: resistive transition curves

H. C. Hamaker, L. D. Woolf, H. B. MacKay, Z. Fisk, M. B. Maple (79)

Magnetic superconductor NdRh₄B₄: neutron scattering

C. F. Majkrzak, D. E. Cox, G. Shirane, H. A. Mook, H. C. Hamaker, H. B. MacKay, Z. Fisk, M. B. Maple (82)

Reentrant SC due to FM order: ErRh₄B₄

- Fertig, Johnston, DeLong, McCallum, Maple, Matthias (77)
- Moncton, McWhan, Schmidt, Shirane, Thomlinson, Maple, MacKay, Woolf, Fisk, Johnston (80) (neutron scattering)

Reentrant FM SC ErRh₄B₄: specific heat

L. D. Woolf, D. C. Johnston, H. B. MacKay, R. W. McCallum, M. B. Maple (79)

Moncton, McWhan, Schmidt, Shirane, Thomlinson, Maple, MacKay, Woolf, Fisk, Johnston (80)

<u>Microscopic coexistence</u> of SC & sinusoidally-modulated magnetic state with $\lambda \sim 100$ Å

Moncton, McWhan, Schmidt, Shirane, Thomlinson, Maple, MacKay, Woolf, Fisk, Johnston (80) Similar behavior – HoMo₆S₈ Lynn et al. (81)

LINEARLY POLARIZED SINUSOIDALLY MODULATED MAGNETIC STATE ($\mu \perp c$) - ErRh₄B₄

$(Er_{1-x}Ho_x)Rh_4B_4$: FM – $\mu\perp c$ vs $\mu//c$

Johnston, Fertig, Maple, Matthias (78); Mook, Koehler, Maple, Fisk, Johnston, Woolf (82) $Ho(Rh_{1-x}Ir_x)B_4$: FM vs AFM

• H. C. Ku, F. Acker, B. T. Matthias (80)

• K. N. Yang, S. E. Lambert, H. C. Hamaker, M. B. Maple, H. A. Mook, H. C. Ku (82)

• S. E. Lambert, M. B. Maple, O. A. Pringle, H. A. Mook (85)

Oscillatory magnetic state in FM SCs

ErRh₄B₄, HoMo₆S₈: $\lambda \sim 10^2 \square$ Å (neutron scattering) Explanation based on electromagnetic interaction e.g.; Blount & Varma (1979) Ferrell, Battacharjee & Bagchi (1979) Matsuda, Umezawa & Tachiki (1979) Suhl (1980)

$$\begin{split} h_{nm}(x) &= \delta(-i\nabla) m(x) + h(x) \\ h_{nm}(x) - molecular field acting on RE ion \\ m(x) - RE magnetic moment \\ h(x) - magnetic field generated by \\ persistent current \\ h_{m}(q) &= \delta(q) m(q) + h(q) = \delta(q) m(q) - 4\pi F(q) m(q) \\ &= [\delta(q) - 4\pi F(q)] m(q) = \delta(q) m(q) \end{split}$$

Oscillatory magnetic state in FM SCs

Normal:

$$\begin{aligned} &\mathcal{C}_{\mathbf{x}}^{\mathbf{g}} = (\mathcal{T} - Dg^{2})/C \\ &\mathcal{T}_{\mathbf{x}} - Curie temperature \\ &D - magnetic stiffness coefficient \\ &C = N \mu_{eff}^{2}/3k_{B} - Curie constant \\ &\mathcal{C}_{\mathbf{x}}^{2}/3k_{B} - Curie constant \\ &\mathcal{C}_{\mathbf{x}}^{2} \end{pmatrix} maximum at g=0 \Rightarrow \lambda = \infty \\ &\Rightarrow FM \text{ for } \mathcal{T} \leq \mathcal{T}_{\mathbf{x}} (2nd \text{ order}) \end{aligned}$$

Superconducting:

$$\begin{aligned} \widetilde{\mathscr{F}}(q) &= \mathscr{F}(q) - 4\mathscr{W}F(q); F(q) = \frac{\exp(-\frac{\pi}{2}q^2/2)}{\lambda_{z}^2 q^2 + \exp(-\frac{\pi}{2}q^2/2)} \\ &= \frac{\exp(-\frac{\pi}{2}q^2/2)}{\lambda_{z}^2 q^2 + \exp(-\frac{\pi}{2}q^2/2)} \\ &= \frac{\pi}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\ &= \frac{\pi}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\ &= \frac{\pi}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\ &= \frac{\pi}{2} + \frac{1}{2} \\ &= \frac{1}{2} + \frac{1}{2} \\ &= \frac{1}{2} + \frac$$

Oscillatory magnetic state in FM SCs

END

<u>Conventional superconductivity</u>

Electron pairs (Cooper pairs) – $(\mathbf{k}\uparrow, -\mathbf{k}\downarrow)$

S = 0 (singlet)

L = 0 (s-wave)

Pairing mechanism — electron-phonon interaction

 $T_c \approx \theta_D exp(-1/N(E_F)V)$

Isotropic energy gap $\Delta(\mathbf{k}) = \Delta$

"Activated" behavior;

e.g., $C_e(T) \sim exp(-\Delta/T)$

<u>Unconventional superconductivity</u>

Electron pairs (L > 0)

S = 1 (triplet) \Rightarrow L = 1 (p-wave)

S = 0 (singlet) \Rightarrow L = 2 (d-wave)

Pairing mechanism – AFM spin fluctuations

Anisotropic energy gap $\Delta(\mathbf{k}) \neq \Delta$

 $\Delta(k)$ vanishes at points or lines on Fermi surface

"Power Law" behavior;

e.g., $C_e(T) \sim T^n$ (n = 2, line nodes; n = 3, point nodes)

