Defects in strongly correlated metals and superconductors

P.J. Hirschfeld, U. Florida

Rev Mod Phys 81, 45 (2009)

ICMR July 2009

Collaborators

Brian Andersen

John Harter

Wei Chen

Arno Kampf

Markus Schmid

Marc Gabay

Julien Bobroff

Henri Alloul

Outline

- Impurity induced magnetism
- AF/SC coexistence in cuprates: stripes/droplets?
- YBCO/dirty cuprates "dichotomy"
- NMR linewidths
- Neutrons: order from disorder?
- Quasiparticle properties:
 - thermal conductivity
 - resistivity
 - STM

Some inorganic strongly correlated materials

Cuprate phase diagram

Cuprate phase diagram

phase separation/competition of AF, etc. and SC regions? consequences for d-wave quasiparticles?

Friedel response of free Fermi gas to magnetic moment (J. Friedel 1958)

What will happen in a *correlated* gas when a *nonmagnetic* impurity is inserted?

Simplest approach: describe background correlations with RPA

$$\chi = \frac{\chi_0(T)}{1 - U\chi_0(T)}$$

Magnetic susceptibility peaked near π,π enhances staggered magnetic response in real space

Generation of staggered response to uniform field

2) impurity: all q's are *coupled*. In particular, a uniform (q=0) magnetic field now couples to $q=\pi,\pi$ and induces staggered response if $\chi(q)$ is large there

So...

In a magnetic system with AF correlations

Poilblanc Scalapino Hanke 95,96...Martins, Dagotto, Riera: 96,97

Impurity-induced spin excitations in quasi-1D systems: theory

- 1D systems are testing grounds for these ideas because we can do calculations exactly.
- Excitation spectrum of spin 1/2, 3/2, ... Heisenberg chains gapless " 1,2, 3.... " " gapped
- Impurities cut chains into segments of even or odd numbers of spins.
- Response to impurity knows about correlations of pure chain!

Impurity-induced spin excitations in quasi-1D systems: theory

Spin-1/2 or spin-1 Heisenberg chains with end defect

Miyashita & Yamamoto 1993; Sorensen & Affleck 1995; Kim et al 1998; Alet & Sorenson 2000...

Impurity-induced spin excitations in quasi-1D systems: experiment

How about 2D? Cuprates

Does such impurity-induced magnetism exist, and how does it show up?

Is it always induced by a magnetic field, or can it exist spontaneously?

Is the induced magnetism from random impurities phase-incoherent, or can it cause long range order when "droplets" overlap?

Is this the same thing as "stripes" pinned by disorder?

Magnetism at non-magnetic impurity sites in cuprates

NMR expts.: in-plane impurities in YBCO (Alloul group, ...)

alternating polarization induced near Zn, Li, ...

"moments" are paramagnetic, ↑Sû→0 as H→0

"spin glass" phase diagrams

"spin glass" phase diagrams

"spin glass" phase diagrams

Frozen "ordered" magnetism in superconducting LSCO, enhanced by field

Lake et al 2002:

Static ordered magnetism in underdoped LSCO (x=7.5%)

Kimura et al 2003: disorder can create ordered magnetic state

- No static magnetism observed in "pure" sample
- None observed when 1% Zn was added
- Signal at *q** with 1.7% Zn

μ SR in LSCO, BSCCO: spin freezing

μSR: BSCCO, LSCO

O defect

YBCO is different (neutrons & µSR)

Optimal doping: Zn shifts spectral weight to low ω, no static ordering Sidis et al 1996, 2000

Sidis et al 2001: pure YBCO_{6.5}: quasistatic magnetic ordering The circumstance that this is clearly not observed implies that the magnetic moments fluctuate on a time scale longer than the one of the neutron scattering experiment (10^{-10} s) but much shorter than the one of the μ SR experiment (10^{-6} s) .

(dirty sample – B. Keimer, priv. comm.)

Same group: YBCO_{6.45} (T_c =35K) displays static order aXv: 0902.3335

Controversy over coexistence at very low doping O6.35: Sanna et al 2004, Stock et al 2006, R. Miller et al 2006

YBCO: LSCO (BSCCO, etc.):

- only paramagnetic impurity moments, even with Zn.
 No static magnetism in H=0.
- universal qp transport in underdoped samples

clean! Especially ortho-I,II

- static ordered magnetism in pure underdoped samples x<15%, induced by extra disorder at optimal doping
- qp transport suppressed at underdoping

dirty! Dopants always disordered

Try to understand differences with simple theory of impurity-induced magnetism

Superconductivity +AF correlations+disorder

Can we understand expts. at low doping in superconducting state by simple mean-field theory, accounting for finite disorder?

Theories of moment formation in 2D correlated systems

see Alloul et al, Rev Mod Phys 81, 45 (2009)

strong coupling:

- Poilblanc, Scalapino Hanke 1994
- Gabay 1994
- Khaliullin, Fulde... 1995, 97,...
- Dagotto,... 1996,97
- Tsuchiura,... 2000*
- Wang Lee 2002*

weak coupling:

- Early "local paramagnon" theories: Lederer, Beal Monod, ...Schrieffer...
- Bulut 2000, 2001
- Ohashi 2001, 2002*
- Ting, ... 2004*

Hamiltonian (weak-coupling approach)

Homogeneous phase diagram

Local magnetic droplet around 1 nonmagnetic impurity

Local magnetic state depends on V_{imp} and U

"phase transition" similar to Salkola Balatsky Schrieffer 1997 for s-wave

Magnetism from splitting of impurity resonance

* Optmal doping: all resonances unsplit ⇒paramagnetic state
 * Underdoped: some split resonances observed (?)

Is disorder-induced magnetism = phase competition?

$$S = \int d^2x \int_0^{1/T} d\tau \left\{ \frac{1}{2} \{ (\partial_\tau \phi_\alpha)^2 + c^2 (\nabla_x \phi_\alpha)^2 + [r + v |\psi(x)|^2] \phi_\alpha^2 \} + \frac{u}{2} (\phi_\alpha^2)^2 \right\},$$

e.g. Demler et al 2001

No:

- In SC state, bound states leading to magnetism are found to be formed & split by field even if SC order parameter is artificially held constant.
- Similar phenomenology in N state, although no bound state without pseudogap

YBCO

YBCO: "no" static magnetism assume: clean except for Zn

Zn impurity induced magnetization pattern in magnetic field

paramagnetic moment!

T-dependence for single impurity in field

strong enhancement of impurity magnetism at low T

Importance of correlations

U=0 results give modulated magnetization (Friedel), but a) m>0 always; b) too small \Rightarrow disagrees with "LDOS-only" explanation (Tallon, Xiang, ...)

Interference of many impurities

Magnetization depends on local disorder environment

Effect of interference on m-histogram

¹⁷O NMR: comparison of line for 0,1.5,3,6% Zn

Fix T=15K, U=1.75t, t'/t=-3.5, x=15%, V_{imp} =10t

vary n_{imp}

expt: Ouazi et al PRL '06

Short distances: ⁷Li NMR

LSCO

(and other intrinsically disordered cuprates)

disorder enlarges Local AF phase

LSCO: static ordered magnetism exists assume: "intrinsically dirty" due to Sr dopant disorder

Andersen, Schmid, Kampf, PH PRL 2007 **Formation of magnetic order: x=7.5%**

Real space/q-space magnetism (underdoped)

а

Counts per minute

tuning transition with Zn a la Kimura 2003 (opt. doping)

U=3.2; V_{imp}=100t

2%

T,H dependence

Expt: 7.5% doped LSCO: Lake et al 2002 Theory: Schmid, Kampf, PH & Andersen 2009

"Ordered" magnetic signal begins at T_c due to bound state formation

Combined Disorder & Field-Induced Antiferromagnetism

Charge Density

Order Parameter

Magnetization

Neutron response: freezing of spin fluctuations by disorder

Optimal doping: Zn shifts spectral weight to low ω , no static ordering in YBCO Sidis et al 1996, 2000, 2001

Theory: freezing of spin fluctuations by disorder

Dynamical susceptibility from BdG eigenvalues and eigenfunctions:

Graser, PH, Andersen 2009

Neutron response: theory

Graser, PH, Andersen 2009

See e.g Eremin 2008

Neutron response: theory

Graser, PH, Andersen 2009

0.5

freezing of spin fluctuations by 1 impurity V=100t

Quasiparticles in presence of disordered magnetism

- qp's may scatter with small q from weak magnetic fluctuations
- qp's may reconstruct, or suffer intense Umklapp scattering, if sizeable regions of quasi-LR order are present
- Q: mean field theory overestimates order.
 Is the picture qualitatively the same for slow fluctuations?

Transport: breakdown of "universal" thermal conductivity

P.A. Lee 1993; Graf et al 1995

$$\frac{\kappa_0}{T} = \frac{k_B^2}{3\hbar} \frac{n}{c} \left(\frac{v_F}{v_2} + \frac{v_2}{v_F} \right)$$

Importance for "2-gap" question

If κ isn't universal, you can't use it to extract gap velocity v₂!

How does disordered magnetism influence quasiparticles?

e.g, transport:

Bogoliubov-de Gennes eqns:
$$\mathcal{H} = \sum_{ij} \Phi_i^{\dagger} \begin{bmatrix} t_{ij} & \Delta_{ij} \\ \Delta_{ij}^{\dagger} & -t_{ij}^* \end{bmatrix} \Phi_j,$$

Thermal conductivity

$$\kappa(T) = \frac{1}{2\pi\hbar T} \int dx \, x^2 \left(-\frac{\partial f}{\partial x}\right) \langle S_T(x) \rangle,$$

Kernel
$$S_T(x) = \frac{2\pi^2 \hbar^2}{N} \sum_{n,n'} |\langle \hat{v}_g \rangle_{nn'}|^2 \delta(x - E_n) \delta(E_n - E_{n'})$$

dG mat. elts. of group velocity BdG eigenvalues

Thermal conductivity—why does κ_0 decrease as one underdopes?

Sun et al 2006

low T suppression of $\kappa(T)/T$ compared to universal value reproduced within present scenario. The origin is a reduced DOS at low energy.

Resistivity upturns: W. Chen, B. Andersen and PH, arXiv:0905.1449 Ando et al 1995

Rullier-Albenque et al 2003

Resistivity upturns

W.Chen, B Andersen & PH 2009 See also Kontani and Ohno 2006

Segawa et al 1999

increasing B

STS FT-LDOS on BSCCO-2212 surfaces $\rho(\vec{q},\omega) = \int \frac{d^2r}{(2\pi)^2} e^{i\vec{q} \cdot \vec{r}} \rho(\vec{r},\omega)$

Hoffmann et al. (2002)

"Octet model": d-wave SC

$$\rho(\vec{q},\omega) = \int \frac{d^2r}{\left(2\pi\right)^2} e^{i\vec{q}\cdot\vec{r}} \rho(\vec{r},\omega)$$

Quasiparticle dispersion in superconductor

$$E_{\pm}(\vec{k}) = \pm \sqrt{\varepsilon(\vec{k})^2 + \Delta(\vec{k})^2}$$

→ For d-wave superconductor LDOS largest at tip of bananas (octet-model) (er...not true)

→ Expect peaks in FT-LDOS at wavevectors connecting banana tips (yes)

Extinction of QPI peaks at critical energy E₀ in underdoped samples

Details of Kohsaka et al 2008: QPI on underdoped Bi-2212

QPI and AF order

Kohsaka et al: intense scattering near antinode?

But:weak disorder scattering or AF spin fluct scattering not sufficient: Graser et al 2008

"STS kink energy"

Model: coexisting AF+dSC

B.M. Andersen and PH 2008

$$\begin{split} H &= \sum_{\mathbf{k}\sigma} \left[\epsilon(k) - \mu \right] c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} \\ &+ \sum_{k} \left[\sum_{\sigma} \sigma M c^{\dagger}_{\mathbf{k}+\mathbf{Q}\sigma} c_{\mathbf{k}\sigma} + \Delta(k) c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} \right] + \text{H.c.}, \quad = \sum_{k} \psi^{\dagger}_{\mathbf{k}} A(k) \psi_{\mathbf{k}\downarrow} \\ \end{split}$$

$$A(k) = \begin{pmatrix} \epsilon_1(k) + \epsilon_2(k) - \mu & M & \Delta(k) & 0 \\ M & -\epsilon_1(k) + \epsilon_2(k) - \mu & 0 & -\Delta(k) \\ \Delta^*(k) & 0 & -\epsilon_1(k) - \epsilon_2(k) + \mu & M \\ 0 & -\Delta^*(k) & M & \epsilon_1(k) - \epsilon_2(k) + \mu \end{pmatrix}$$

$$E_{1,2}(k) = \sqrt{\left([\epsilon_2(k) - \mu] \pm \sqrt{\epsilon_1^2(k) + M^2} \right)^2 + \Delta^2(k)},$$

eigenenergies -

$$\epsilon_1(k) = 2t \left(\cos k_x + \cos k_y\right),$$

$$\epsilon_2(k) = 4t' \cos k_x \cos k_y + 2t'' \left(\cos 2k_x + \cos 2k_y\right)$$

add impurities:

$$H_{imp} = \sum_{\mathbf{k}, \mathbf{k}' \in RBZ} \psi_{\mathbf{k}}^{\dagger} V(k, k') \psi_{\mathbf{k}'}, \qquad V(k, k') = V \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & -1 & -1 \end{pmatrix}$$

FT-STS from dsC vs. dSC+AF

I. Contours of constant energy (CCE)

In mixed case, CCE's "remember" dSC state until critical energy E_0

FT-STS from dSC vs. dSC+AF

III. Destruction of localized q-spots by AF order due to different coherence factors in AF state

FT-STS from dsC vs. dSC+AF

IV simulate effect of short range nature of AF state

More realistic simulations of disorder-induced magnetic landscape needed

Effect on LDOS

• What happens when E=critical E₀?

Conclusions

- "Intrinsically disordered" cuprates exhibit spin glassy behavior coexisting with dwave state ⇒ scattering from disordered magnetic droplets explains many expts.:
 - -- Broadening of NMR lines in YBCO by Zn, Li
 - -- Effect of disorder on static magnetism, dynamic neutron response
 - -- Resistivity upturns in metallic samples
 - -- Nonuniversal suppression of thermal conductivity in underdoped samples
 - -- Disappearance of QPI and appearance of DOS kink feature appears in DOS when CCE's touch zone face
- Questions:
 - relation to stripes
 - does charge order follow or lead?

Stripes?

This model: disordered stripes are stabilized for large U

Possible: crossover from droplets to disordered stripes with underdoping