

FeSe – a simple superconductor?

Claudia Felser

Vadim Ksenofontov, Fred Casper, Shahab Naghavi

T. M. McQueen, A. J. Williams, R. J. Cava

S. Medvedev, I. Trojan, T. Palasyuk, Mikhail I. Eremets,

G. Wortmann

Universität Mainz University of Princeton MPI-Chemie, Mainz Universität Paderborn

- My background
- FeSe
 - •Stoichiometry
 - •Pressure
 - •Doping
- Summary
- Interesting crystal structures

10 nm

Rational Design

Synthesis

computational design

c)

nano particles

single crystals

structure

spectroscopy

thin films

ICMR Summer School on Novel

Superconductivity in the PbO-type structure α -FeSe

Fong-Chi Hsu*[†], Jiu-Yong Luo*, Kuo-Wei Yeh*, Ta-Kun Chen*, Tzu-Wen Huang*, Phillip M. Wu[‡], Yong-Chi Lee*, Yi-Lin Huang*, Yan-Yi Chu*[†], Der-Chung Yan*, and Maw-Kuen Wu*[§]

Superconductivity in the PbO-type structure α -FeSe

Fong-Chi Hsu*[†], Jiu-Yong Luo*, Kuo-Wei Yeh*, Ta-Kun Chen*, Tzu-Wen Huang*, Phillip M. Wu[‡], Yong-Chi Lee*, Yi-Lin Huang*, Yan-Yi Chu*[†], Der-Chung Yan*, an

- A key observation is that the clean superconducting phase exists only in those samples prepared with intentional Se deficiency.
- A small magnetic anomaly is observed at 105 K, which is more pronounced in the FC measurements.
- Inset shows the magnetic hysteresis of the sample measured at 2 K. It confirms the superconducting characteristic of the sample.

The development of the superconducting PbO-type β -FeSe and related compounds

M.K. Wu^{a,b,*}, F.C. Hsu^{c,d}, K.W. Yeh^a, T.W. Huang^a, J.Y. Luo^a, M.J. Wang^c, H.H. Chang^b, T.K. Chen^a, S.M. Rao^a, B.H. Mok^d, C.L. Chen^a, Y.L. Huang^a, C.T. Ke^a, P.M. Wu^e, A.M. Chang^e, C.T. Wu^b, T.P. Perng^d

^a Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan

^bDepartment of Physics, National Tsing Hua University, Hsinchu 300, Taiwan

^cInstitute of Astrophysics and Astronomy, Academia Sinica, Taipei 115, Taiwan

^d Department of Material Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan

e Department of Physics, Duke University, Durham, NC 27708, USA

Fe_{1.01±0.2}Se

D.J. Singh / Physica C 469 (2009) 418-424

Superconductivity depends strongly on the stoichiometry 100% superconducting sample for $Fe_{1.01\pm0.2}Se$

Excess Fe instead of Se deficiency

McQueen et al. Phys. Rev. B 79 (2009) 014522

9

Fe_{1.01}Se

- Freshly polished iron pieces and selenium shot
- Sealed in silica tubes under vacuum with a piece of cleaned carbon
- Sealed in a second evacuated silica ampoule
- Complex annealing procedure
- Small pieces were then loaded into small silica ampoules and annealed at various temperatures 300–500 °C or 2 days followed by quenching in –13 °C brine.
 Protection from oxidation in air by storage in an argon glove box.

$Fe_{1.01}Se$

- No long range magnetic interaction in non superconducting Fe_{1.03}Se
- Impurities suppress superconductivity

McQueen et al. Phys. Rev. B 79 (2009) 014522

Fe_{1.01}Se below 100 K: dimer formation

•On cooling, Fe_{1.01}Se undergoes a twisting of the tetrahedra, splitting the Fe-Fe distances into two distinct sets.

ent

•Nonsuperconducting Fe_{1.03}Se, in contrast, shows no transition by XRD.

McQueen et al., Phys. Rev. Lett 103 057002 (2009).

Fe_{1.01}Se below 100 K: dimer formation

he first is by displacement of pairs of iron ions along the short in-plane a-axis. This is consistent with the formation of Fe-Fe dimers, which would imply that the transition is driven by an increase in metal-metal bonding.

ent

McQueen et al., Phys. Rev. Lett 103 057002 (2009).

Tetra-Ortho transition in Fe_{1.01}Se below 100 K

Normalized area under Mössbauer spectra is sensitive to the tetra- ortho transition.

Ortho phase is more soft

The non superconducting phases are less soft

Dependence of the Mössbauer-Lamb factor from the properties

Fe _{1 01} Se	f = 0.11(1)
Fe _{1.03} Se	f = 0.16(1)
Fe _{0.97} Cu _{0.04} Se	f = 0.18(1)

ent

- Estimation of the normalized specific-heat jump at *Tc* is *C*/*Tc*=1.31, which is in good agreement with the BCS expected value of 1.4.
- This confirms the bulk nature of the superconductivity below 8.5 K in Fe_{1.01}Se-300 °C.
- There is a second transition at 1K in the superconducting sample

FeSe: superconductivity under pressure

moment

Y. Mizuguchi, et al Appl. Phys. Lett. 93, 152505 2008 ICMR Summer School on Novel Superconductors 2009

Electronic and magnetic phase diagram of β -Fe_{1.01}Se with superconductivity at 36.7 K under pressure

S. Medvedev^{1,2}, T. M. McQueen³, I. A. Troyan^{2,4}, T. Palasyuk^{2,5}, M. I. Eremets², R. J. Cava³, S. Naghavi¹, F. Casper¹, V. Ksenofontov¹, G. Wortmann⁶ and C. Felser¹*

M. I. Eremets, *et al.*, *Science* **319**, 1506 (2008)

Medvedev et al. Nat. Mat. 8 630 (2009) arXiv:0903.2143

Fe_{1.01}Se under pressure: Transport

• Maximum of T_c: 37 K at 8.9 GPa

Medvedev et al. Nat. Mat. 8 630 (2009) arXiv:0903.2143

moment

Fe_{1.01}Se under pressure: Transport

Medvedev et al. Nat. Mat. 8 630 (2009) arXiv:0903.2143

www.ep]

Fe_{1.01}Se under pressure: Structure

10

15

5

Pressure (GPa)

0

d

- Superconductivity depends strongly on the stoichiometry
- Very soft material
- Transforms under pressure
 into the NiAs type structure
- Struture determinations were done at
 - •ESRF
 - •Taiwan
 - •SPring8

Medvedev et al. Nat. Mat. 8 630 (2009) arXiv:0903.2143

$Fe_{1.01}Se$

- Limitation of superconductivity related to the tetragonal phase (black) by the appearance of the hexagonal more dense semiconducting phase (red)
- Nicely seen also in the Mößbauerspectra: the isomer shift of the tetragonal covalent FeSe is smaller compared to the hexagonal FeSe
- The hexagonal FeSe exists under ambient conditions only off stochiometric and is magnetic

b

mome

31.0 GPa

GP

 $Fe_{1.01}Se$

- Anomalous pdependence of the Debye Waller factor
- Phonon softening observed for the superconducting phase
- Limited by the appearance of the hexagonal phase
- Electron phonon coupling might be also important

Ksenofontov et al. To be published

Hexagonal Fe_{1.01}Se

Semiconducting ground state of the NiAs phase can not described within the LSDA

Medvedev et al. Nat. Mat. 8 630 (2009) arXiv:0903.2143

chool on Novel Superconductors 2009

Tetragonal FeSe

D.J. Singh/Physica C 469 (2009) 418-424

Tertagonal

Shahab Naghavi with Crystal06 and Hybridfunctional

Fe_{1.01}Se

Tetragonal to orthorhombic transition ~100K only in the superconducting phase

Linear resistance of the orthorhombic phase: anomalous metal?

Medvedev et al. Nat. Mat. 8 630 (2009) arXiv:0903.2143 McQueen et al. PRL 103, 057002 arXiv:0905.1065v1 (2009).

Fe_{1.01}Se: evidence for quantum critcality

PHYSICAL REVIEW B 79, 104504 (2009)

Evidence of quantum criticality in the phase diagram of $K_x Sr_{1-x} Fe_2 As_2$ from measurements of transport and thermoelectricity

Melissa Gooch,1 Bing Lv,2 Bernd Lorenz,1 Arnold M. Guloy,2 and Ching-Wu Chu1,3,4

Fe_{1.01}Se

T. Imai et al. PRL 102, 177005 (2009)

⁷⁷Se NMR spin-lattice relaxation rate, 1/T₁:

- Strong enhancement towards Tc of antiferromagnetic spin fluctuations
- Hydrostatic pressure enhances spin fluctuations as well as Tc.
- Electronic properties of FeSe are very similar to those of electron-doped FeAs superconductors,

This finding suggests that undoped FeSe superconductor is actually on the verge of an SDW ordering.

As NMR lineshapes for $Ba(Fe_{1-x}Co_x)_2As_2$

- 91) F. L. Ning, K. Ahilan, T. Imai, A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus: J. Phys. Soc. Jpn. 77 (2008) 103705.
- 92) F. L. Ning, K. Ahilan, T. Imai, A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus: J. Phys. Soc. Jpn. 78 (2009) 013711.

T. Imai et al. PRL 102, 177005 (2009)

The Phase diagram of Fe_{1.01}Se

0.00

0.02

0.04

0.06

Reversible phase transition: NiAs structure

Medvedev et al. Nat. Mat. 8 630 (2009) arXiv:0903.2143

chool on Novel Superconductors 2009

Nominal F content x

0.16

0.14

0.18

0.20

Doping of FeSe

- Al, Ga, Sm occupies the Fe sites no possitiv influence on the superconducting properties
- Ti, V, Cr destroys superconductivity

Table 1

The superconducting transition, the phase transition temperatures and γ angle for FeSe/Te compounds.

	T_c	Phase transition temperature	γ angle ^b (°) at 6 K
FeSe _{0.88}	8.5 K	~105 K	90.279
FeTe	None	~80 K ^a	90
Fe(Se _{0.5} Te _{0.5})	15.2 K	~100 K	90.122
(Fe _{0.9} Mn _{0.1})Se _{0.85}	11.2 K	~85 K	90.166
(Fe _{0.9} Cu _{0.1})Se _{0.85}	None	None	90

^a The FeTe phase transition is from high temperature tetragonal phase (P4/nmm) to an orthorhombic (Pmmn) symmetry.

^b The γ angle is defined as an angle between a_T -and b_T axes in the original tetragonal unit cell.

The development of the superconducting PbO-type β-FeSe and related compounds

M.K. Wu^{a,b,*}, F.C. Hsu^{c,d}, K.W. Yeh^a, T.W. Huang^a, J.Y. Luo^a, M.J. Wang^c, H.H. Chang^b, T.K. Chen^a, S.M. Rao^a, B.H. Mok^d, C.L. Chen^a, Y.L. Huang^a, C.T. Ke^a, P.M. Wu^e, A.M. Chang^e, C.T. Wu^b, T.P. Perng^d

Physica C 469 (2009) 340-349

PHYSICAL REVIEW B 79, 094521 (2009)

oment

A 1 V

S

Bulk superconductivity at 14 K in single crystals of Fe_{1+y}Te_xSe_{1-x}

B. C. Sales, A. S. Sefat, M. A. McGuire, R. Y. Jin, and D. Mandrus Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

Y. Mozharivskyj Department of Chemistry, McMaster University, Hamilton, ON, Canada L8S 4M1 (Received 10 February 2009; published 24 March 2009)

 Cu substitute Fe up to a solubility limit of 20–30%, after which a first-order transition to the three-dimensional CuFeSe₂ structure type is observed

A J Williams et al. J. Phys.: Condens. Matter 21 (2009) 305701

lovel Superconductors 2009

Cu doping changes the Fe-Fe distances 1% doping – no Meißner effect Mott transition can be induced above 4% Cu doping

A J Williams et al. J. Phys.: Condens. Matter 21 (2009) 305701

lovel Superconductors 2009

Metal – Insulator Transition in Fe_{1.01-x}Cu_xSe

- Variation of magnetic susceptibility of the Fe_{1.01-x}Cu_xSe samples with temperature
- A clear increase in the local moment with x is observed, culminating in a spin-glass-type transition at Fe_{0.89}Cu_{0.12}Se, which then broadens out at higher dopings.

This finding suggests that undoped FeSe superconductor is actually on the verge of an SDW ordering.

A J Williams et al. J. Phys.: Condens. Matter 21 (2009) 305701

IRON-BASED SUPERCONDUCTORS

Vital clues from a basic compound

Investigation of the phase diagram of the structurally simple compound FeSe may prove instrumental in raising the transition temperature in Fe-based superconductors and in understanding magnetic-mediated superconductivity.

Bernd Büchner and Christian Hess

Hence, not only is FeSe the prototypical new iron-based high-temperature superconductor, but it also seems to yield a simple and clear-cut example of "magnetism mediated superconductivity"¹²,

NATURE MATERIALS | VOL 8 | AUGUST 2009 |

What is different in FeSe compared to the ironpnictides

- -highest TC among the binary SC
- -FeSe is SC in the parent phase
- -SC depends strongly on the stoichiometry
- -The SC is connected to the tetra to ortho transition
- -disappearance of SC is connected with the phase transition into NiAs
- -no static magnetism over the whole phase diagram
- -short range magnetic fluctuations
- -pressure induced TC increase is not related to the suppression magnetism
- -phonons and spin fluctuations play a crucial role for SC

Ingredients for high temperature superconductors (Mac Beasley)

-symmetry
-anisotropy
-short coherence length
(high N_EF, low v_EF)
-low charge carrier density

Does the structure type count?

Valence fluctuation – Superconductivity- Magneto resistance

Goal: rational Syntheses of Compounds with special electronic and magnetic properties

- Valence fluctuations
- Superconductivity
- Magneto resistance

- Same Structure type
- Electronic fingerprint

Valence fluctuation – Superconductivity- Magneto resistance

Perovskite		Cuprates	Manganites
		Bismutates	
Inverse Perovskite	EuPd ₃ B	MgNi ₃ C	
Th ₃ P ₄	Eu ₃ S ₄	La ₃ S ₄	Gd_3S_4
$Pu_4(C_2)_3$	$Rb_4(O_2)_3$	$Y_4(C_2)_3$	
AIB ₂	EuNiP	ZrRuP	
		MgB ₂	
TaS ₂		NbSe ₂	Gdl ₂
Heusler		Pd ₂ ZrAI	Co ₂ TiSn

Valence fluctuation – Superconductivity- Magneto resistance

Spinell		LiTi ₂ O ₄	Fe ₃ O ₄
Cu ₂ Sb		NaAlSi	
LiMnAs		LiFeAs	
ThCr ₂ Si ₂	EuNi ₂ P ₂	Ba _{1-x} KFe ₂ As ₂	
	EuCu ₂ Si ₂	LuNi ₂ B ₂ C	
		$LaRu_2P_2$	

Theory and Experiment

LDA-Fermi Surface ARUPS $La_{2-2x}Sr_{1+2x}Cu_2O_7$ $La_{2-2x}Sr_{1+2x}Mn_2O_7$

Dessau et al. priv. com. Colorado Mannella et al. NATURE 438 474(2005).

C. Felser et al., J. Mater. Chem 8 (1998)787

Ni^{1,5+} - Nickelates: Candidates?

V. V. Poltavets et al. Phys. Rev. Lett 102, 046405 (2009)

C. Fe

due to Eu 4f states. indicator for a vHS whereas La_3S_4 becom below the Fermi lev superconductivity via l

Ins

Superconductivity

in La₃PdB and SrPdP ıberg Universität Mainz, D-55099 Mainz, Germany

sumption that inhomogeneous mixed valency is an is order anti-ferromagnetically at low temperatures, icides with the Fermi level, whereas the singularity lies van Hove scenario it must be possible to induce sevier Science S.A.

Journal of

EuPd₃B: inhomogenous mixed valent

Prediction: Superconductivity in LaPd₃B

Superconductivity in the non-oxide perovskite MgCNi₃

T. He*, Q. Huang†, A. P. Ramirez‡, Y. Wang§, K. A. Regan*, N. Rogado*, M. A. Hayward*, M. K. Haas*, J. S. Slusky*, K. Inumara*, H. W. Zandbergen*, N. P. Ong§ & R. J. Cava*

MgNi₃C: isoelectronic to LaPd₃B Three deimensional relative to LuNi₂B₂C

NATURE VOL 411 3 MAY 2001 www.nature.com

Solid State Communications 119 (2001) 675-679

www.elsevier.com/locate/ssc

Structure and superconductivity in LnNi₂B₂C: comparison of calculation and experiment

S.M. Loureiro^a, C. Kealhofer^a, C. Felser^b, R.J. Cava^{a,*}

Relation between structure and T_c in the borocarbides

perconductors 2009

JOURNAL OF SOLID STATE CHEMISTRY **130**, 254–265 (1997) ARTICLE NO. SC977300

LMTO Band Structure Calculations of ThCr₂Si₂-Type Transition Metal Compounds

Dirk Johrendt,^{*,†,1} Claudia Felser,^{*,‡} Ove Jepsen,[‡] Ole Krogh Andersen,[‡] Albrecht Mewis,[†] and Jean Rouxel^{*}

level by antibonding metal-nonmetal interactions. The band structures of superconducting LuNi₂B₂C and nonsuperconducting SrRh₂P₂ are compared and their similarities are pointed out. A van Hove singularity, generated by metal-metal interaction, coincides with the Fermi level in LuNi₂B₂C and lies about 0.2 eV higher in SrRh₂P₂. By doping, it should be possible to induce superconductivity in SrRh₂P₂ and related compounds. © 1997

May be the Ni – Ni distance counts

ICMR Summer School on |