
 
 
 
 

Notes on the Ginzburg-Landau Theory 
 
 
 

ICMR Summer School on Novel Superconductors 
University of California, Santa Barbara 

August 2 – August 15, 2009 
 

M.R. Beasley 



Chapter 3

Superconductivity as a
macroscopic quantum phenomenon

In the modern view, superconductivity is understood as a phase ordering of pairs
of electrons (Cooper paris) into a macroscopic quantum state. Let us build to this
macroscopic quantum state by first considering a single pair and then turn to the
many-pair state. Our approach will be heuristic. The goal is not rigor, but to convey
physical insight.

3.1 The macroscopic quantum pair wave function

3.1.1 Wave function of a single pair

Consider the wave function of a pair of electrons that are bound together by some
interaction.

ψp(~ρ, ~r) = Φ(~ρ)χαβψ(~r) (3.1)

where

Φ(~ρ) = R(ρ)Ylm(θ, φ) (3.2)

is the wave function of the internal (relative) coordinate of the pair and ψ(~r) is the
wave function for the center of mass coordinate of the pair. χαβ is the spin wave
function of the pair and can be either a singlet or a triplet. The exact details of the
internal wave function depend on the nature of the interaction, whereas the wave
function for the center of mass motion obviously does not.
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26CHAPTER 3. SUPERCONDUCTIVITY AS A MACROSCOPIC QUANTUM PHENOMENON

Fig. 3.2 illustrates schematically the situation for s-wave (l = 0, spin singlet),
p-wave (l = 1, spin triplet) and d-wave (l = 2, spin singlet) pairing. The indicated
symmetries are consistent with the overall requirement for a change of sign under ex-
change of the electrons. Note that, as is customarily done in pedagogical treatments,
the use of spherical harmonics here should be viewed as a surrogate for the appro-
priate representations of the actual symmetry of the crystal (e.g., cubic, tetragonal,
etc). Note also that, in the presence of a crystal potential, the angles θ and φ are
referenced to the crystal axes and are not free to rotate in space as is the case in
superfluid He-3.

Since we are interested only in an emergent, macroscopic phenomenological the-
ory, we need not preserve the details of the internal wave function. This suggests
taking an average over the internal coordinates∫

Φ(~ρ)ρ2dρ d cos(θ) dφ = α (3.3)

which leads to the result that ψp → αχαβ ψ(~r). It is also important to establish the
size ξ0 of the pair, because our averaged wave function only makes sense for spatial
dimensions greater than ξ0. (See Section 3.1.2 below.)

This is fine for s-wave pairing (l = 0), but clearly goes to far for higher angular
momentum pairing, since in that case α as defined above would be identically zero.
This suggests that the angular momentum wave function needs to be retained and
that we should take ∫

Φ(~ρ)ρ2dρ = α′ (3.4)

in which case, ψp becomes

ψp → α′ Ylm(θ,φ)χαβ ψ(~r) (3.5)

which is the wave function for a bosonic particle (our pair) with certain symmetry
and spin properties.

3.1.2 Size of a Cooper pair

The size of a Cooper pair can be estimated using elementary considerations. The
slope of the dispersion curve in the normal state at the Fermi energy is

∂E(k)

∂k
|EF

= }vF (3.6)
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Figure 3.1: This is the caption.

This relation permits us to relate the energy scale of states involved in pairing (the
gap ∆) to the range of k-vectors involved.

δk ≈ ∆

}vF
(3.7)
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which defines the characteristic length scale (i.e., size) of a Cooper pair

ξ0 ≈
1

δk
≈ }vF

∆
(3.8)

This result can equally well be obtained by associating }/∆ with the time scale
to form a Cooper pair and asking how far the pairing electrons go in that time.
The result is }vF/∆, because the motion is ballistic. The value of this alternative
formulation is that it can be used to estimate the size of a Cooper pair when the
superconductor is dirty (i.e., when the mean free path l << ξ0).

In this case, the pairing electrons random walk with step length l for a time }/∆,
which using the notions of a random walk, leads to the result

ξd0 ≈
√
ξ0
l
l ≈

√
ξ0l << ξ0 (3.9)

where ξ0/l is the number of steps taken of length l. This result leads to the very
important insight that for the same interaction strength, the size of a Cooper pair is
smaller in a dirty superconductor than in a clean one.

Lying behind this result, however, is the profound fact that the pairing interaction
is unaffected by elastic scattering. Put more dramatically, random walking electrons
pair just a effectively (i.e. with same energy ∆) as ballistic electrons. This fact is
known as Anderson’s Theorem and is a consequence of the fact that Cooper pairing
occurs between time-reversed pairs, of which the simplest case is those with equal
an opposite k-vectors. But a time-reversed random walk transverses the same path
as the original path (backwards of course), and therefore they are legitimate pairing
states in the BCS theory.

3.1.3 Wave function for many pairs

We have examined the internal structure of a single, bound pair of electrons. It
can be understood by elementary quantum mechanics. Now we must consider a
large number of pairs. The situation is very complicated indeed, because in a su-
perconductor the size of the pair can be larger (and for the conventional, low Tc
superconductors, much, much larger) than the mean separation between the pairs.
Thus the pairs strongly overlap. Still in a superconductor, even under this condition,
there is a strong correlation into pairs, in which the correlation is identical for each
pair, and the identical wave functions for the pairs are phase coherent.

In quantum mechanics, this leads to a coherent state, which is essentially the
classical limit of a single bosonic mode in a quantum system. The coherent state



3.1. THE MACROSCOPIC QUANTUM PAIR WAVE FUNCTION 29

contains a macroscopic occupation (number of particles) in a single mode. In our
case, it leads to a macroscopic quantum state in which all the pairs are in the same
quantum state with a well-defined quantum phase. (For a helpful discussion of
coherent states, see Applied Quantum Mechanics , Chapter 13, by W.A. Harrison).

To gain better insight into the nature of a coherent state, consider the symmetric
combination of a set of N pairs, each described by a wave function ψi

ψN{ri} =
′∑ {

ψ1(r1)ψ2(r2)ψ3(r3)......ψN(rN)
}

(3.10)

where the prime on the sum indicates a sum over all permuations of the product of
ψi’s (i.e., a fully symmetric wave function).

Note that
ψN ∝ ei(φ1+φ2+....φN ) (3.11)

If the φi
′s are random, ψN is incoherent. If on the other hand,

φ1 = φ2 = φ3.... = φN = φ (3.12)

we have

ψN ∝ eiNφ (3.13)

which is a coherent state.
Recall, however, that N and φ are quantum mechanically conjugate variables

governed by an uncertainty relation

∆N∆φ ≥ 1 (3.14)

Therefore, if N is fixed, φ is completely undetermined, which obviously is not good
for a superconductor.

To get a state where φ is well determined and N is well enough determined, we
must take a linear combination of states with different N .

ψsc =
∑
N

λNψN (3.15)

where the weight λN is peaked up around some average value of N . Achieving this
is not a problem, if N is large. For example, if we want ∆φ ≈ 10−10, it requires
∆N ≈ 1010, but even then ∆N/N ≈ 10−13 for a typical metal.

To make φ exactly determined, one must take all N from one to infinity with
λN = 1, yielding
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Figure 3.2: This is the caption.

ψsc ∼
∑
N

eiNφ = δ(φ) (3.16)

Of course these arguments are only suggestive, but they do capture much of what
is essential. A proper theoretical treatment goes deep in to microscopic theory. It
also must deal with the fact mentioned above that at least for conventional super-
conductors the pairs greatly overlap. At face value, the wave function in Eqn. xxx
makes sense only when the pairs are relatively small and overlapping minimally. Still
the basic idea is right. What happens in BCS theory is that the pairing is viewed in
k-space rather than real space. The pairing is between states with equal and opposite
k values (more generally and precisely, time-reversed pairs), and it is the phases of
these states that order. And one takes a linear combination of states with different
N for exactly the same reason as discussed above. When the result is Fourier trans-
formed back into real space one find pairs that individually are of size ξ0 and greatly
overlapping.

So in the end, we are led to a wave function of the form

ψsc(~r) = Ylm(θ,φ)χαβ ψ(~r) (3.17)

for the center of mass motion of the pairs.
Before ending this discussion, it will be helpful going forward to mention some

issues of nomenclature. In the usual Ginzburg-Landau theory, it is ψ(~r) that is taken
as the wave function (or order parameter, as it is sometimes called in that theory),
because, as we shall see, the internal angular part does not matter for symmetry
reasons in the case of an infinite sample. On the other hand, when interfaces are
involved, as in the Josephson effect or when tracking the evolution of the phase going
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from one face of a material to another, it does matter, and technically one should
use ψsc(~r). There could be phase changes of π after all. As is usually the case in
such matters of potentially ambiguous nomenclature, the meaning is clear from the
context.

3.2 Properties of the superconducting macroscopic

quantum state

We now have a pair wave function ψ(r) that describes the center of mass behavior of
the pairs. It describes carriers of mass m∗ = 2m and charge e∗ = 2e. We now turn
to the physical interpretation of that wave function. For pedagogical simplicity, we
ignore spin and take s-wave pairing. Subsuming the factor α into ψ, the total wave
function ψsc reduces to just the center of mass part, ψsc = ψ. We will return to finite
angular momentum pairing later.

3.2.1 The number and current density of the pairs.

The density of pairs is

ns
∗ =< ψ∗ψ >= ψ∗ψ (3.18)

and the current density

Js = e∗ < ψ∗Jopψ >= e∗ψ∗Jopψ (3.19)

=
e∗}
m∗

(ψ∗∇ψ − ψ∇ψ∗) (3.20)

=
e∗}
m∗

Im(ψ∗∇ψ) (3.21)

Note that in the above the expectation values have been replaced by the quantum
operator operating directly on the wave function. This is because in the macroscopic
quantum limit these expectation values are c-numbers, and therefore quantum fluc-
tuations do not matter. Quantum mechanics has been reduced to simply using the
appropriate operator on a macroscopic field. The situation is not unlike going from
quantum electrodynamics to Maxwell’s equation, except that, as we have empha-
sized, } remains in the macroscopic equations.

Moreover, writing
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ψ(r) =| ψ(r) | eiφ(r) (3.22)

Js can be written

~Js = e∗| ψ |2 }∇φ
m∗

(3.23)

permitting the identification

~vs =
}∇φ
m∗

(3.24)

as the velocity field of the pairs.

3.2.2 Time dependence of the wave function

Next let us consider the time dependence of ψ. This is a more subtle issue. We begin
by noting that in quantum mechanics, for a stationary state,

ψ(t) ∼ e−iEt/} (3.25)

where here E is the energy. The subtle point is that in the macroscopic quantum
model, it is the electro-chemical potential of the pairs

µp = µc + e∗U (3.26)

that plays the role of the energy. Here µc is the chemical potential and U the
electrostatic potential. While it is perhaps intuitive that µp is the energy of each
pair, the use of a thermodynamic quantity in the wave function is not so obvious,
but none the less correct in the macroscopic limit, as proved by Gorkov.

Thus, provided | ψ | is constant in time, the time dependence of ψ reduces to

}
∂φ

∂t
= −E = −µp (3.27)

Note that the restriction that | ψ | is constant in time is very important. When
| ψ | is a function of time, it means that there is a conversion between pairs and
the normal excitations in the superconductor. This is a non-equilibrium process,
and such process in superconductors are complicated and not describable by our
macroscopic quantum model, except in some very special cases.

In any event, under the restriction that | ψ | is time independent, we have
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∂Js
∂t

=
∂

∂t
(e∗| ψ |2 }∇φ

m∗
) =

e∗| ψ |2

m∗
∇(

}∂φ
∂t

) (3.28)

= e∗| ψ |2(−∇µp
m∗

) (3.29)

which implies

~̇vs =
−∇µp
m∗

(3.30)

and we see that the pairs respond inertially to the force F = −∇µp.

3.2.3 Inclusion of the magnetic field

To include the magnetic field in quantum mechanics, the prescription is

p→ −i}∇ (3.31)

where p = mv + (e/c)A is the canonical momentum and A is the vector potential.
Therefore the mechanical momentum

mv = (p− e

c
A)→ −i}(∇− ie

}c
A) (3.32)

Formally, the rule is

∇ → (∇∓ ie

}c
) (3.33)

where the minus sign is used for ψ and the plus for ψ∗.
Making this substitution for ∇ in the expressions above for Js, and recalling that

for a superconductor e becomes e∗, we are led to

Js =
e∗}
m∗

(ψ∗∇ψ − ψ∗∇ψ∗)− e∗2

m∗c
| ψ |2A (3.34)

or equivalently

=
e∗| ψ |2

m∗
(}∇φ− e∗

c
A) (3.35)

and as before

}
∂φ

∂t
= −µp (3.36)
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and now

vs =
1

m∗
(}∇φ− e∗

c
A) (3.37)

Thus in the end, we are led to familiar equations from quantum mechanics, with
the exception that the energy is replaced by the electro-chemical potential, and
the operators operate directly on the wave function, not in expectation values. Put
another way, | ψ |2 = n∗s is the physical density of pairs not just a probability density,
and similarly Js is the physical current density.

As we are about to see, we will be rewarded for our formal efforts thus far.

3.3 Derivation of the hallmarks of superconduc-

tivity

The three hallmarks of superconductivity follow naturally and simply from the results
above.

Zero resistance

As we found above, in the presence of forces, the acceleration of the pairs is

~̇vs =
−∇µp
m∗

(3.38)

which, as we noted, is a purely inertial response. It is the equation for a frictionless
fluid (the superfluid) and clearly implies zero resistance. One might ask, but aren’t
there scattering processes for the pairs that would produce resistance? The answer is
no. Any given pair (and concommittantly the two electrons that comprise the pair)
is (are) locked with all other pairs in a macroscopic quantum state and cannot be
scattered individually. While equation xx is certainly valid, it is incorrect to assume
that it reflects an independent particle (here pair) response, just because it does so
in the normal state. As we shall see, under some circumstances superconductors
do exhibit resistance, but the processes that govern that resistance involve the full
coherent state of the pairs.

The Meissner effect

The Meissner effect also follows easily. First note that



3.3. DERIVATION OF THE HALLMARKS OF SUPERCONDUCTIVITY 35

∇× Js =
e∗| ψ |2

m∗
∇× (}∇φ− e∗

c
A) = −e

∗| ψ |2

m∗c
B (3.39)

which, using Maxwell’s equation relating B and J

∇×B =
4π

c
J (3.40)

leads for a superconductor to

∇×∇×B = − 1

λ2
B (3.41)

or equivalently

∇2B =
1

λ2
B (3.42)

where

λ2 =
m∗c2

4πe∗ns∗
(3.43)

is the superconducting magnetic field penetration depth, which we note depends only
on the density of pairs ns

∗ = | ψ |2.
Equation xxx clearly leads to decaying fields at the surface of a superconduc-

tor B = Hae
−x/λ, which is the Meissner effect, and, in addition, we now have an

expression for λ.

currents in MQM.pdf

Figure 3.3:
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Flux quantization

Consider a multiply connected hollow superconducting cylindar containing some
trapped flux. Assume for the moment that the walls of the cylindar are thick com-
pared to λ (t >> λ)

cylindar flux quant.pdf

Figure 3.4:

Since the pair wavefunction ψ(r) must be single-valued around any closed path,
we require ∮

C

∇φ · ~dl = n2π (3.44)

which is just the Bohr-Sommerfeld quantization condiation
∮
p · dl = nh applied to

a superconductor.

If the thickness t of the walls of the cylindar is much smaller than λ (t << λ), a
contour C can be found for which Js = 0. Hence,

~Js =
e∗| ψ |2

m∗
(}∇φ− e∗

c
A) = 0 (3.45)

which yields

∇φ =
e∗

}c
~A (3.46)

and therefore
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Figure 3.5:

∮
C

∇φ · ~dl =
e∗

}c

∮
~A · ~dl = n2π (3.47)

and since
∮
~A · ~dl = Φ, we are led immediately to flux quantization

Φ = n
hc

e∗
= Φ0 (3.48)

where Φ0 = hc/e∗ is the superconducting flux quantum.
When the path C is such that Js 6= 0, the above argument yields a more general

quantization condition

Φ′ = Φ +
m∗c

e∗2

∮ ~Js · ~dl
| ψ |2

= nΦ0 (3.49)

which shows that in general it is the so-called fluxoid Φ′ that is quantized.
Having demonstrated that the macroscopic quantum model of superconductivity

accounts for the hallmarks of superconductivity – no small achievement – let us turn
to a more systematic development of the model.
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Chapter 4

Elaborations of the macroscopic
quantum model

The macrosocpic quantum model has given us a lot. But, as it stands, it is not
sufficient. There is no equation with which to calculate ψ. Specifically, without some
extension, it cannot deal with situation where | ψ | varies in space or even uniformly
in magnitude. A powerful phenomenological way to do this is to construct the free
energy of a superconductor and then apply the calculus of variation to provide a
set of differential equations that describe the equilibrium behavior of ψ. This is the
point of view taken in the Ginzburg-Landau theory. Also, when both ns

∗ is constant
and it is not necessary to keep track of the phase of ψ, the macroscopic quantum
model reduces to the London theory, which is in essence the classical limit of the
macroscopic quantum model. Mainly, it is applicable to the Meissner state, but a
clever extension makes it applicable to in the vortex state as well. We will begin our
discussion with the traditional London theory.

Before embarking on this program, however, we must be more precise in our nota-
tion. In dealing with the magnetic properties of superconductors, it is often desirable
to make a distinction between the microscopic fields and their macroscopic averages.
Following convention in superconductivity, we will take h to be the microscopic field
and B to be the macroscopic average of h. Consistent with this, we treat Js as a real
current (i.e., ∇× h = (4π/c)Js). Although it is less important, when the distinction
is critical, we will use e for the microscopic electric field and E for its macroscopic
average, otherwise we will stick with E. Confusion with Planck’s constant and the
electric charge is possible, but the distinction is usually obvious from the context.

Also, following the convention in thermodynamics, we use the Gibbs free energy
G when the magnetic field is the thermodynamic variable and the Helmholtz free

39
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energy F when it is the magnetic induction. But note that the thermodynamics of a
superconductor in more interesting than just the distinction between G and F . We
must include the kinetic energy of the pairs as a reversible form of energy, which
has some very interesting conseqences. We address these issues at the end of this
chapter.

4.1 The London theory

As noted above, when both the pair denisity ns
∗ = | ψ |2 is constant and we need not

keep track of the phase of ψ, the macroscopic quantum model of superconducdtivity
reduces to the London theory, which was one of the early phenomenological theories
of superconductivity that remains useful today. As we have already shown, under
the assumed conditions,

∇× Js =
e∗| ψ |2

m∗
∇× (}∇φ− e∗

c
A) = −e

∗| ψ |2

m∗c
B (4.1)

to which we add

∂Js
∂t

=
e∗| ψ |2

m∗
}(
∂∇φ
∂t
− e∗

c

∂A

∂t
) (4.2)

=
e∗| ψ |2

m∗
(−∇µp −

e∗

c

∂A

∂t
) (4.3)

=
e∗| ψ |2

m∗
E =

c2

4π

1

λ2
E (4.4)

where here

E = −∇U − 1

c

∂A

∂t
(4.5)

is the electric field, and for convenience of notation, we neglect possible gradients in
µc.

Summarizing in concise form, we have the London equations

4πλ2

c
∇× Js = −B (4.6)

and
4πλ2

c2
∂Js
∂t

= E (4.7)
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Expressing Js in terms of vs, the London equations can also be written in the
alternative, remarkably concise form

∇× vs = − e∗

m∗c
B (4.8)

and
∂vs
∂t

=
e∗
m∗

E (4.9)

Note that } does not appear in these equations. We have suppressed the macro-
scopic quantum origins of superconductivity. We have, in effect, the ”classical” limit
of superconductivity.

We have already discussed the physical content of these equations (zero resistance
and the Meissner effect) but a few additional points are in order. First, in their
alternative form, we see that when B = 0 (i.e., in the Meissner state) the equations
reduce to those of a frictionless, irrotational (i.e., vortex free) electronic fluid. If B
were not zero, these equations imply there would have to be vorticity, which indeed
is the case in a type 2 superconductor in the vortex state.

These equations also make explict the inductive nature of the intertial supercur-
rent response. From Eqn xxxx, we see that we can define a superconding kinetic
inductivity

LK =
4πλ2

c2
(4.10)

Finally, although we have seen that the London theory is a natural consequence of
the macroscopic quantum model, this does not do justice to London’s achievement.
He developed his theory as a phenomenology of superconductivity to describe zero
resistance and the Meissner effect by pure physical insight, well before the underlying
notion that superconductivity is a macroscopic quantum state of paired electrons was
clear. But London apparently had somehing like this picture in the back of his mind,
because in a footnote in his famous book Superconductivity, he conjucture that the
flux in a superconductor might be quantized, with the charge e rather than 2e,
however.

The astute reader would ask, if London did not know about pairs, how can e∗ = 2e
and m∗ = 2m appear in the London equations. An even more astute reader would
note (as is self-evident from the equations in their alternative form) that the factors
of two in e∗ and m∗ cancel out. A similar cancellation occurs in the expression for
λ, if one notes that ns

∗ is half the electron denisty that has gone supercondcting.
Consequently, the equations could just as well be written in terms of e, m and the
electron density n, which is what London did. We use e∗, m∗ and ns

∗ because we
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arrived at these equations from the macroscopic quantum point of view. Of course,
in the end, one can simply take λ from experiment.

4.2 The Ginzburg-Landau theory

It is physically reasonable to assert that the macroscopic quantum wave function
of a superconductor is that function which minimizes the free energy. Following
Ginzburg and Landau, we can consider Fs to be a functional of ψ(r) and use the
calculus of variations to derive a set of differential equations for ψ(r) that governs its
behavior under general equilbrium conditions. Toward this end, it is first necessary
to construct an expression for the free energy.

4.2.1 Construction of the free energy

From our considerations thus far, it is clear that the Helmholtz free energy of a
superconductor has three main contributions.

Fs = Fn + Condensation energy + Kinetic energy + Field energy (4.11)

which illustrates the general principle that the behavior of a supercondcutor is a
trade off between the kinetic and field energies and the condensation energy.

Using the results from the macroscopic quantum model, we can get an expression
for the free energy

Fs = Fn +

∫
d3r

{
f0 +

1

2m∗
| (−i}∇− e∗

c
A)ψ |

2

+
h2

8π

}
(4.12)

where f0 = −Hc
2/8π is the condensation free energy denisty.

To get a better feel for the kinetic energy density term, take ψ(r) =| ψ(r) | eiφ(r).
Straight forward manipulation yields

KE =
1

2m∗

{
}(∇ | ψ |)2 + | ψ |2(}∇φ− e∗

c
A)2

}
(4.13)

which shows explictly that the kinetic energy density includes contributions from
both gradients in | ψ | and from the usual kinetic energy. The gradient term will
introduce new physics not included in the London theory.
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Free energy in the London limit

To make the connection to the London theory explicit, if ns
∗ is a constant

Fs = Fn =

∫
d3r{f0 + ns

∗1

2
m∗vs

2 +
1

8π
h2} (4.14)

which is intuitively appealing.
Also, using vs = Js/ns

∗e∗ and the defintion of λ, the kinetic energy term can be
written

ns
∗1

2
m∗vs

2 =
1

2

4πλ2

c2
Js

2 =
λ2

8π
(∇× h)2 (4.15)

and the free energy can be written in the particularly compact and useful form

Fs = Fn =

∫
d3r

{
− Hc

2

8π
+

1

8π
[λ2(∇× h)2 + h2]

}
(4.16)

Finally, note that the kinetic energy density can also be written

ns
∗1

2
m∗vs

2 =
1

2
LKJs2 (4.17)

which emphasizes that the kinetic energy is an inductive stored energy.

The Ginzburg-Landau free energy

In this framework, however, it is not sufficient to treat the condensation energy as a
constant. Clearly it must depend on the density of superconducting pairs. Therefore
we generalize the free energy discussed above to

FGL{ψ(r), ψ(r)∗, A} = Fn+

∫
d3r

{
f0(| ψ |2)+

1

2m∗
| (−i}∇− e∗

c
A)ψ |

2

+
(∇× A)2

8π

}
(4.18)

where now f0 explicitly depends on | ψ |2.
The functional form of f0(| ψ |2) is not known a priori, so Ginzburg and Landau

used a Taylor series expansion in powers of | ψ |2. Indeed, the kinetic energy term
can be thought of as the leading gradient term in a Taylor series, which was the
point of view taken by Ginzburg and Landau, in absence of explict knowledge of
the macroscopic quantum concept, although clearly they had something like this in
mind. As they noted, such a Taylor series expansion should be valid near Tc, where
| ψ |2 is small and, as we shall see, ψ(r) is slowly varying in space. Clearly this point
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of view will break down if ψ(r) varies on a length scale comparable to the size of
a Cooper pair ξ0. These caveats notwithstanding, the theory is qualitatively useful
far more generally, and it is quantitatively useful over a substantial range of reduced
temperature t = T/Tc below Tc.

Figure 4.1:

Explicitly, Ginzburg and Landau took

f0 = α| ψ |2 +
β

2
| ψ |4 (4.19)

where α and β are material dependent phenomenological parameters to be deter-
mined experimentally. Today we know that, in the case of classic BCS superconduc-
tors, α and β can also be calculated from the microscopic theory.

4.2.2 Equilbrium value of | ψ | and determnation of the ma-
terial prameters

As noted above, the parameters of the Ginzburg-Landau theory can be determined
from experiment. Neglecting fields and currents, we know that the minimum of
f0(| ψ |2) must give the equilibrium condensation energy and the equilibrium pair
density. The former can be measured directly, and the latter can be determined
from a measurement of the penetration depth.

Consider the structure of f0 as a function of ψ, depending of the signs of α and
β, as illustrated in Fig. 4.2. Clearly, only β > 0 is physical. Moroever, when α > 0,
clearly the minimum (i.e., the equilbrium state) corresponds to the normal state,



4.2. THE GINZBURG-LANDAU THEORY 45

Figure 4.2: This is the caption

| ψeq |= 0. However, when α < 0, the superconducting state is stable, | ψeq |> 0. We
conclude, therefore, that α(T ) must change sign at T = Tc. Following Ginzburg and
Landau, we take

α(T ) = α0(
T − Tc
Tc

) = α0(t− 1) (4.20)

and β independent of temperature. As we shall see these choices are consistent with
experiment.

Note that in the figure above, when viewed as functions of ψ as opposed to | ψ |,
the curves are sections through the full free energy density space. In this case the
single x-axis becomes a plane in Reψ and Imψ space, and the full free energy curve
is just a rotation of the curve shown around the z-axis. The point is that the overall
phase of the wave function is arbitrary.

It is trivial to determine the equilibrium value of | ψ | in the superconducting
state (α < 0), which is traditionally designated as ψ∞ (See Fig. 4.2). Taking

∂f

∂ | ψ |
= 2α | ψ | +2β| ψ |3 = 0 (4.21)

to find the minimum, yields

ψ∞
2 = −α

β
=
| α |
β

(4.22)

In addtion, the equilibrium condensation energy density is given by
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(fs − fn) ||ψ|=ψ∞= −α
2

2β
(4.23)

These expressions can be easily related to experiment in order to determine α
and β. Since

λ2 =
m∗c2

4πe∗2n∗s
(4.24)

it follows that

ψ∞
2 =
| α |
β

=
m∗c2

4πe∗2λ2
(4.25)

and directly, we have

(fs − fn) ||ψ|=ψ∞= −α
2

2β
= −Hc

2

8π
(4.26)

Taken together, these two results yield

| α |= e∗2Hc
2λ2

m∗c2
∝ (1− t) (4.27)

and

β =
4πe∗4Hc

2λ4

m∗c4
∝ constant (4.28)

Note that the temperature dependences of α and β determined from experiment
are consistent with those assumed initially, confirming those assumptions.

4.2.3 The Ginzburg-Landau equations

Everything is now in order to derive the famous Ginzburg-Landau equations. Pulling
together all the previous results, we have for the Ginzburg-Landau free energy

FGL{ψ(r), ψ(r)∗, A} = Fn+

∫
d3r

{
α| ψ |2+β

2
| ψ |4+ 1

2m∗
| (−i}∇− e∗

c
A)ψ |

2

+
(∇× A)2

8π

}
(4.29)

Note that in writing this equation, we have been a bit more precise as to what
are the correct thermodynamic variables. Specifically, we include both ψ and ψ∗.



4.2. THE GINZBURG-LANDAU THEORY 47

Rigorously this is necessary since ψ is a complex number and therefore has a real
and an imaginary part (i.e., it really represents two functions). This distinction has
no marked importance in what is to immediately follow, but if we were to use the
modulus and the phase of ψ as the two functions, new insights on the thermodynamics
of superconductivity are obtained. We will return to these important subtleties later.

Now taking variations of Fs{ψ(r), ψ(r)∗, A} with respect to ψ, ψ∗ and A, and
after some standard manipulations, we arrive at the Ginzburg-Landau (or GL for
short) equations

αψ + β| ψ |2ψ +
1

2m∗
(−i}∇− e∗

c
A)2ψ = 0 (4.30)

and

Js =
c

4π
∇× h =

e∗}
2m∗i

(ψ∗∇ψ − ψ∗∇ψ∗)− e∗2

m∗c
| ψ |2A (4.31)

or

Js =
e∗| ψ |2

m∗
(}∇φ− e∗

c
A) = e ∗ | ψ |2vs (4.32)

Note that the equation for ψ∗ is identical to that for ψ with complex conjugation, so
it contains no new information and therefore is not explicitly shown.

From the variational process, we also get an expression for the boundary condi-
tions at any superconductor/vacuum interface

(−i}∇− e∗

c
A)ψ |n̂= 0 (4.33)

which ensures that ~Js · n̂ = 0 at the surface.

Physical content of the Ginzburg-Landau equations

Pondering these equations, we see that the second GL equation (for Js) is exactly
that obtained in the macroscopic quantum model, as it must be, only here we see
that it is consistent with minimization of the free energy. It is the first GL equation
that contains the new physics. Specifically, it governs the spatial variations of ψ.
Associated with these spatial variations is a new length scale – the so-called GL
coherence length ξ(T ) – that governs the distance over which ψ naturally varies (See
Chapter xxx).
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At the same time, however, note that the GL equations are coupled differential
equations and must be solved self consistently. For example, when ψ 6= ψ∞, the
second GL equation will adjust the superconducting magnetic penetration depth

λ2 =
m∗c2

4πe∗| ψ |2
(4.34)

self consistently. This will happen, for example, if the current density gets very high
(Again, see Chapter xxx).

Note also that while the boundary condition is physically reasonable in that it
ensures that no current flows through a vacuum interface, this is not the boundary
condition of microscopic quantum mechanics, which requires that ψ = 0 at the
interface. There is no problem here, however, since our ψ is a macroscopic quantum
wave function in which we have averaged over the internal wave function of the pairs.
The truly microscopic wave function (as, say, in the BCS theory) does go to zero at
a vacuum surface. But all this happens on a length scale smaller than the size of a
Cooper pair and therefore is beyond the content of the GL theory.

4.3 GL theory for non-s-wave pairing

Let us consider what happens to the GL theory when we have non-s-wave pairing.
Recall that in general for our macroscopic quantum wave function, we had

ψsc(~r) = Ylm(θ,φ)χαβ ψ(~r) (4.35)

Therefore, in the general case, it is this wave function that should be used to
construct the GL free energy. Specifically, we have for the GL free energy density

FGL{ψsc(r); θ, φ} = Fn +
{
α′ Y ∗l,mYl,m| ψ |

2 +
β′

2
Y ∗l,mYl,mY

∗
l,mYl,m| ψ |

4 (4.36)

+
1

2m∗
Y ∗l,mYl,m| (−i}∇−

e∗

c
A)ψ |

2

+
(∇× A)2

8π

}
(4.37)

where now the un-averaged internal coordinates appear explicitly, and where for
simplicity we ignore spin.

As is immediately obvious, the Yl,m’s appear only as products that are positive
definite. Therefore, we can integrate over the internal coordinates safely to obtain
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FGL{ψsc(r)} = Fn+

∫
d3r

{
α| ψ |2 +

β

2
| ψ |4 +

1

2m∗
| (−i}∇− e∗

c
A)ψ |

2

+
(∇× A)2

8π

}
(4.38)

where α = α′ and β = β′
∫
d(cosθ) dφ {Y ∗l,mYl,mY ∗l,mYl,m}. In short, we have a free

energy of the original GL form. Clearly, the internal symmetry does not matter.
Fundamentally, this result reflects the fact that FGL is an observable and therefore

must have the same symmetry at the crystal. Moreover, it shows that the GL theory
is the same for pairs of any internal angular momentum state (s, p, d, etc). Fig. 4.3
shows the situation pictorially. Of course, this symmetry argument breaks down at
surfaces and interfaces where the crystal symmetry is in general lower. For example,
contrast the two paths shown in Fig. 4.4, where we show the situation for a d-wave
superconductor. Going around an internal closed path involves no phase change, and
therefore the distinction between ψ and ψsc is not important. By contrast, it is very
important if the path goes from one surface to another.

s-wave GL.pdf

Figure 4.3: This is the caption

Actually, a similar situation arises in a more familiar context. In developing the
Landau theory (See Section 4.4 immediately below) for ferromagnets and antiferro-
magnets, the order parameter (equivalent to our center of mass wave function) is the
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same for both types of order. For a ferromagnet, it is the magnetization, but for an
antiferromagnet it is the amplitude of the staggered magnetization (a function that
goes up,down, up, down etc as one moves through space). In our case, Yl,m is like
the staggered magnetization.

s interior vs surface.pdf

Figure 4.4: This is the caption

4.4 The Landau theory of second-order phase tran-

sitions

We have derived the GL theory from our macroscopic quantum model. Ginzburg and
Landau used a different approach – one based on Landau’s general theory of second-
order phase transitions, of which superconductivity is only one example. The Landau
theory involves the powerful concept of broken symmetry, i.e., the notion that when
going through a second-order phase transition the system spontaneously generates an
order of some kind that breaks a symmetry of the parent state. The classic example
is the spontaneous ordering of the spins of a ferromagnet along a specific direction
when the paramagnetic parent state is completely rotationally symmetric. Given
a particular kind of ordering, one defines an order parameter (the magnetization
in our example) and constructs the free energy of the system in terms of a Taylor
series expansion (including gradient terms) of the free energy in terms of the order
parameter.

In constructing the free energy, all terms consistent with the symmetries of the
crystal and the nature (scalar, vector, phasor, etc) and dimensionality (one, two,
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three, etc) of physical space and of the order parameter must be included. All the
coefficients on the expansion are to be determined experimentally. Since a second-
order phase transition is continuous by its nature and the order grows continuously
from zero, one can always carry out such a Taylor series expansion. Variation of this
free energy in terms of the order parameter leads to a set of differential equations
that describe the behavior of the system.

The Landau approach is extremely general and powerful. As it has been devel-
oped over the years, we now know that various types of order come in universality
classes – the emergent behavior – that depend only on the nature of the order but
not the details at the microscopic level. It does not take much imagination to see
that the GL theory as developed above would lend itself to such an approach, and
many treatments of superconductivity adopt this approach. In this approach, the
notion of superconductivity as a phenomenon that breaks gauge invariance is front
and center. We chose to emphasize the specific character of superconductivity as a
macroscopic quantum phenomenon. Still, any serious student of superconductivity
should be familiar with the Landau theory. Many fine treatments of this theory and
its application are available.

Finally, before leaving the subject of the Landau theory, we should note that
our treatment of non-s-wave pairing in Section 4.3 was very simplified and hardly
exhaustive. The possible internal symmetries of the Cooper pairs are far richer than
simply higher angular momentum states (e.g., breaking time reversal symmetry).
Similarly, the symmetries of the crystals in which superconductivity is found can
be more complex (and interesting) than in our illustrations (e.g., crystals without
inversion symmetry). For these situations, the Landau theory is the best way to
make progress simply.

4.5 Thermodynamic variables in superconductiv-

ity

In thermodynamics, we know that one uses the Gibbs or Helmholtz free energy
depending on what is the independent thermodynamic variable (e.g., P versus V , or
H versus B). P and V , and B and H are thermodynamically conjugate variables.
Specifically, in the case of magnetic fields, we have for the free energy densities,

f = f(B) and g = g(H) (4.39)

which are related by



52CHAPTER 4. ELABORATIONS OF THE MACROSCOPIC QUANTUM MODEL

g = f − HB

4π
(4.40)

The above relations are completely general and therefore apply to superconduc-
tors. What is new in the case of superconductivity is that the kinetic energy is also
a reversible thermodynamic quantity. This brings some new twists.

Recall that in the GL theory we took ψ and ψ∗ as the relevant variables and
therefore

fGL = fGL{ψ, ψ∗} (4.41)

The situation is more interesting when we write ψ =| ψ | eiφ. From the result

fGL = fn + α| ψ |2 +
β

2
| ψ |4 +

1

2m∗
| (−i}∇− e∗

c
A)ψ |

2

+
(∇× A)2

8π
(4.42)

where the kinetic energy term can be written

1

2m∗
| (−i}∇− e∗

c
A)ψ |

2

=
1

2m∗
{}(∇| ψ |)2 + | ψ |2(}∇φ− e∗

c
A)2} (4.43)

and where as usual

1

m∗
(}∇φ− e∗

c
A) = vs (4.44)

we see that the appropriate choice of thermodynamic variables are | ψ |2 and (1/m∗)(}∇φ−
e∗A) = vs.

That fs = fs(vs) is even more explicit in the London limit where

fL = fn + f0 + ns
∗1

2
m∗vs

2 +
B2

8π
(4.45)

where n∗s is constant.
The thermodynamic conjugate variable to vs is the superconducting current den-

sity Js

∂fs
∂vs

=
m∗

e∗
Js (4.46)

and therefore
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g(Js) = f − m∗

e∗
vsJs (4.47)

Sometimes, however, it is necesary to work where the phase of the wave function
is explicit. To do this, it is helpful to define a new function, the gauge-invariant
phase difference γ, given by the line integral

γ ≡
∫

(∇φ− e∗

}c
A) · ~dl =

∫
m∗vs

}
· ~dl (4.48)

When A = 0,

γ = ∆φ ≡
∫
∇φ · ~dl (4.49)

which motivates the nomenclature. But ∆φ is not in general a gauge invariant
quantity, where as γ is. In any event, γ is the physically relevant quantity because
it is related to vs, which is an observable. This connection is explicit in the relation

}∇γ = m ∗ vs (4.50)

which is completely general.
The point is that, although φ is an intuitively clear quantity, it is not the funda-

mental one. Indeed, when we say superconductivity is a phase ordering of Cooper
pairs, technically we mean gauge invariant phase ordering, which is the basis for the
erudite statement that superconductors break gauge symmetry.

The transcription to the case where ∇γ is the thermodynamic variable is now
obvious

∂fs
∂(∇γ)

=
}
e∗
Js (4.51)

and therefore

g(Js) = f − }
e∗
∇γJs (4.52)

While the introduction of the quantity γ may all seem a bit formal, it has real
utility and importance. Consider a superconductor to which a current I is applied.

The reversible free energy delivered to the superconductor is

dF = IV dt (4.53)

but
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for free energy calc.pdf

Figure 4.5: This is the caption

V =

∫
E · ~dl =

∫
(
−∇µp
e∗

− 1

c

∂A

∂t
) · ~dl =

∫
(

}
e∗
∂∇φ
∂t
− 1

c

∂A

∂t
) · ~dl (4.54)

=
}
e∗
∂γ

∂t
(4.55)

and therefore

dF = IV dt =
}
e∗
I
∂γ

∂t
dt =

}
e∗
Idγ (4.56)

which demonstrates that γ and I are thermodynamically conjugate variables. Note
that here the line integral determining γ is taken from the entire length of the su-
perconductor (from point 1 to 2 in the figure).

Summarizing, we have for the total free energy

Fs = Fs(γ) and I =
}
e∗
dFs
dγ

(4.57)

and correspondingly

Gs(I) = F − }
e∗
γI (4.58)

Note that we are dealing here with the total free energy in terms of the extensive
variables γ and I. This last relation will be of great utility in discussing the Josephson
effect. When we come to the Josephson effect, we will also see that ψ and ψ∗ are
thermodynamically conjugate variables.



Chapter 6

Physical consequences of the
Ginzburg-Landau theory

The GL theory is rich in physical consequences. We touched very briefly on some
of these in the previous chapter, at least in qualitative terms. In this chapter, we
discuss these consequences more comprehensively and in detail.

6.1 The GL coherence length

If |ψ| deviates from its equilibrium value ψ∞, there is a natural healing length back
to the equilibrium value. This length is called the GL coherence length. Assume
there are no fields or currents present, then ψ can be taken to be real. Now suppose
that ψ deviates from ψ∞

length.pdf

Figure 6.1: This is the caption
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ψ = ψ∞ + δψ (6.1)

Substituting this ψ into the first GL equation (Eqn xxx) and linearizing, we
obtain,

2α δψ +
}2

2m∗
∇2δψ = 0 (6.2)

or

δψ +
ξ2(T )

2
∇2δψ = 0 (6.3)

which has solutions of the form

δψ ∼ e
− x√

2ξ(T ) (6.4)

where

ξ(T )2 =
}2

2m∗ | α |
= ξ2(0)

( Tc
Tc − T

)
(6.5)

is the so-called GL coherence length. Note that ξ(T ) diverges as (1− t)−1/2 as t→ 1.
The length ξ(0) is known as the zero-temperature GL coherence length. Of

course, the GL theory is not valid at T = 0, and the logic of the name comes from
the fact that ξ(0) is the zero temperature extrapolation of the GL result. The physical
importance of ξ(0) is that it sets the basic length scale of the healing process.

A natural question then is: what is the relation between the zero-temperature
GL coherence length ξ(0) and the BCS coherence length ξ0? This question can be
answered within Gorkov’s formulation of the BCS theory. As shown by Gorkov, for
conventional low-Tc superconductors,

ξ(0) = 0.74ξ0 In the clean limit, l >> ξ0 (6.6)

and
ξ(0) = 0.85

√
ξ0l In the dirty limit, l << ξ0 (6.7)

These results are quite natural, given our discussion of the size of a Cooper pair in
Section 3.1.2. Clearly the overall length scale for healing is the size of a Cooper pair.
Of course the divergence of ξ(T ) as T → Tc means the slowly varying approximation
of the GL theory is always valid near Tc.

Finally, we note that there is a very useful relation between ξ and λ. Recall that
α = e∗2H2

cλ
2/m∗c2, which means that
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ξ(T ) =
Φ0

2
√

2πHc(T )λ(T )
(6.8)

or

ξ(T )λ(T ) =
Φ0

2
√

2πHc(T )
(6.9)

One useful application of this relation is to use the mean free path dependence
of ξ to establish the mean free path dependence of λ. To do this first recall that
λ(t) ≈ λ0/

√
1− t4, which near Tc goes as λ0/2

√
1− t = λ(0)/

√
1− t, where

λ(0) =
λ0

2
(6.10)

is the zero-temperature GL penetration depth, consistent with the definition of ξ(0).

Now using Eqn xxx above and recalling that Hc does not depend on mean free
path (due to the time-reversed nature of Cooper pairing), we have directly that

λ(0)dirty
λ(0)clean

≈ ξ(0)clean
ξ(0)dirty

≈
√
ξ0
l

(6.11)

which is consistent with the sum rule argument presented in Section 5.6. And again
we emphasize that in the dirty limit, λ increases and, concomitantly, the pair density
decreases.

6.2 Local versus nonlocal electrodynamics

The relative sizes of ξ and λ affect the electrodynamics of a superconductor. In the
macroscopic quantum model, we average out the internal structure of a Cooper pair.
But when λ < ξ, this assumption is not valild, because in this case the supercon-
ducting shielding currents are decaying over a length scale smaller than the size of
a Cooper pair (See Fig. 6.2 below) . Obviously, in this situation, one must resort
to microscopic theory. In the parlance of the field, we refer to these two regimes as
local and nonlocal elelectrodynamics. More specifically, in the local limit, the pair
current is a simple function of position (as in the macroscopic quantum model as we
have developed it), whereas in the nonlocal limit, it is an integral over a region the
size of a Cooper pair around any given position. Fortunately, for the vast majority
of superconductors λ > ξ, and the much simpler local theory applies.
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electrodynamics.pdf

Figure 6.2: This is the caption

6.3 The proximity effect

The proximity effect arises at the interface between a superconductor and a non-
superconducting material, typically a normal metal. The point is that the Cooper
pairs can move back and forth across the interface. The result is that, near the
interface, superconductivity is induced in the normal metal and the superconductivity
in the superconductor is weakened.

Right at the interface, the situation is complicated and requires a microscopic
description. At the microsopic level, the critical processes involve so-called Andreev
reflections, which is a fascinating process by which normal electrons and Cooper
pairs convert one into the other. Unfortunately, we can not treat these processes at
the macroscopic quantum level. On the other hand, we can avoid these details by
simply introducing a suitable set of phenomenological boundary conditions. Thus,
our theory will be fine at distances away from the interface larger than the size of a
Cooper pair.

To see how all this works, consider a planar S/N interface as shown in Fig. 6.3.
Assume the N material can be described by as a superconductor with T >> Tc.
Then we have

ψn − ξ2
n

d2ψn
dx2

= 0 (6.12)

where ξ2
n = }2/2m∗αn and αn > 0 in the N region, and
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proximity effect.pdf

Figure 6.3: This is the caption

δψs −
ξ2
s

2

d2δψs
dx2

= 0 (6.13)

in the S region.

The boundary conditions follow from the simple boundary condition found in the
GL theory with an important addition:

1

m∗s
ψs
dψs
dx

=
1

m∗n
ψn
dψn
dx

(6.14)

and

ψn(0+) = Aψs(0
−) (6.15)

The first boundary condition is an obvious extension of that found in the GL theory.
The second contains the new physics and permits a finite value of ψ to be induced
in the N material.

Pictorally, these conditions can be visulized simply, and intuitively as seen in the
figure below.

Note that in the GL approximation, ψ become discontinous at the boundary,
reflecting our ignorance of the exact, microsopic (continuous) behavior.

In any event, the problem now reduces to a simple set of linear first-order dif-
ferential equations and their associated boundary conditions. From the form of the
equations we can see that the solutions will be exponential functions, and from the
boundary conditions, we have that the amplitudes of these exponential functions at
the interface are given by
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effect BCs.pdf

Figure 6.4: This is the caption

δψs(0
−)

ψ∞
=

1

1 + (
√

2/A2)(m∗n/m
∗
s)(ξn/ξs)

(6.16)

and

ψn(0+)

ψ∞
=

1

1 + (A2/
√

2)(m∗s/m
∗
n)(ξs/ξn)

(6.17)

6.4 S/N domain wall energy

In our discussion of the intermediate state in Section 5.5, we introduced the notion of
the domain wall energy between normal and superconducting domains within a su-
perconductor. This domain wall energy can be calcuated straightforwardly using the
GL theory, but the details are complicated. We shall use here a simpler qualitative
argument and then simply quote the exact result.

Any domain wall energy is simply the excess energy necessary to form the wall.
For an S/N doman wall in a superconductor, we know that the field will penetrate a
distance λ from the normal region into the superconductor, and that the amplitude of
the pair wave function must go from its equilibrium value ψ∞ far from the boundary
to zero in the normal region. The situation is illustrated in Fig. 6.5 below, along
with the associated changes in the free energy density in the vicinity of the domain
wall.

Just by looking a this figure, it is clear that
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domain wall schematic.pdf

Figure 6.5: This is the caption

γsn =
H2
c

8π
δsn ≈

H2
c

8π
(ξ − λ) (6.18)

where δsn ≈ (ξ − λ) is the width of the domain wall.
This is a striking result. It says that if ξ < λ, the domain wall energy is negative,

which in turn means the the system will break up into N and S regions as finely
as possible. Moreover, as we have already noted, this inequality holds for most
superconductors, with the notable exception of the simple elemental superconductors.
The exact dividing line is conventionally written in terms of the ratio

κ = λ/ξ (6.19)

where the critical value at which the domain wall energy equals zero is given by
κc = 1/

√
2. It follows therefore that for κ < 1/

√
2, one has a type 1 superconductor,
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and for κ > 1/
√

2, a type 2 superconductor.

6.5 Current-induced depairing

In general, as the current density Js increases, the kinetic energy of a superconductor
increases correspondingly. But this is not the whole story. As we shall show below,
under these conditions, the pair density decreases so as to achieve the lowest free
energy. For simplicity, consider a fine superconducting filament of diameter d and
area S such that

d < ξ(T ) and λ(T ) (6.20)

The first conditon assures that ψ is constant across the filament, and the second that
Js is constant. Hence, we have a one-dimensioinal problem, and the free energy per
unit length becomes

Fs
S

=
Fn
S

+ α |ψ|2 +
β

2
|ψ|4 +

}2

2m∗

∣∣∣dψ
dx

∣∣∣2 (6.21)

Clearly, the energy will be minimized if |ψ| does not vary along x. However, this
does not mean that |ψ| = ψ0 does not adjust in the face of an increasing current. In
any event, it follows that

ψ = ψ0 e
ikx (6.22)

and therefore

vs =
}∇φ
m∗

=
}k
m∗

(6.23)

Fig. 6.6 shows this solution in both the macroscopic quantum (GL) picture and
in the classical (London) picture.

Depairing cartoon.pdf

We can now write the free energy of the filament as

Fs
S

=
Fn
S

+ αψ2
0 +

β

2
ψ4

0 +
1

2
m∗v2

s ψ
2
0 (6.24)

which is natural, since we are using the Helmhotz free energy, for which vs is the
thermodynamic independent variable.
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cartoon.pdf

Figure 6.6: This is the caption

6.5.1 Behavior at fixed velocity

Taking vs as the independent thermodynamic variable, we minimize the free energy
above with respect to ψ2

0, which leads to the condition

α + βψ2
0 +

1

2
m∗v2

s = 0 (6.25)

and therefore

ψ2
0

ψ2
∞

=
(

1− 1

|α|
1

2
m∗v2

s

)
(6.26)

which can be written in two useful forms:

ψ2
0

ψ2
∞

= 1−
(vs
vc

)2

(6.27)

where vc = (2|α|/m∗)1/2 = }/m∗ξ(T ), and

ψ2
0

ψ2
∞

= 1− (kξ)2 (6.28)

where kc = ξ−1.

Note that as a function of vs (or k), the pair density goes continuously to zero at
a critical velocity vc (or wave vector kc). See Fig. 6.7 below.

The corresponding pair current is given by



78CHAPTER 6. PHYSICAL CONSEQUENCES OF THE GINZBURG-LANDAU THEORY

vs vsubs.pdf

Figure 6.7: This is the caption

Js = ψ2
0 e
∗ vs = ψ2

∞e
∗ vc

(
1−

(vs
vc

)2)(vs
vc

)
(6.29)

which has the striking property that Js has a maximum

JGLc =
2

3
√

3

ψ2
∞ e
∗}

m∗ ξ
∝ (1− t)3/2 (6.30)

as a function of vs. The current density JGLc is known as the GL depairing critical
current density.

JGLc plays a very important role in superconductivity, as it represents the max-
imum possible current density a superconductor can carry, once all other factors
limiting Js have been circumvented, and the superconductor is only limited by the
fundamental limit associated with its kinetic energy density. Another physical con-
sequence of depairing is that since n∗s = n∗s(Js), it follows that the kinetic inductivity
of a superconductor is nonlinear, LK = LK(Js).

Finally, we note that viewed as a function of Js < JGLc , there must be two
solutions for ψ, one on each side of the maximum in the function of Js versus vs. To
see this explicitly and to better understand its meaning and significance, we need
to examine the situation when Js is the independent thermodynamic variable. This
corresponds the the usual situation in practice in which the superconductor is current
biased.
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6.5.2 Behavior at fixed current density

In the case that the current density is the independent thermodynamic variable, we
must use the Gibbs free energy. For our filamentary superconductor, we have, using
Gs = Fs − (m∗/e∗)vsJs,

Gs
S

=
Gn
S

+ αψ2
0 +

β

2
ψ4

0 +
1

2
m∗v2

s ψ
2
0 −

m∗

e∗
vsJs (6.31)

or

Gs
S

=
Gn
S

+ αψ2
0 +

β

2
ψ4

0 −
1

2

m∗J2
s

e∗ψ2
o

(6.32)

Fig. 6.5.2 shows the functional dependence of Gs/S, from which it is readily seen
that, for any 0 < Js < JGLc , there are two solutions (extrema) for ψ0, one stable and
the other unstable. The unstable solution corresponds to the high velocity side of
the Js vs vs curve in Fig. 6.7 above.

for depairing.pdf

Figure 6.8: This is the caption

But the significance of Fig. 6.5.2 is far greater than simply confirming that,
for a given Js, there are two solutions for ψ0. It shows that the pair current in a
superconductor is only metastable to a collapse of ψ0 to zero. Of course, strictly
speaking, for our filament in the thermodynamic limit (infinitely long filament) the
energy barrier for a uniform collapse, which is proportional to the length of the
filament, is infinite.

But what if we were to relax the assumption that |ψ| is constant along the length
of the filament, and allow local fluctuations? As we shall analyze later in detail
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when we deal with fluctuations in superconductors, in this case the energy barrier
for a filament becomes finite and locally |ψ| can fluctuate to zero. But if |ψ| →
0, Js also goes to zero, and superconductivity will reform. Rougly speaking, the
superconductor would find itself at the origin in Fig. 6.5.2, and ψ0 would naturally
increase toward ψ∞ The actual picture is more subtle than this, but the notion of
a dynamic cyclic state is basically correct and is part of the story about how we
understand resistance in superconductors. Needless to say, we will return to such
important issues in great detail. For now, let us simply complete the details of the
calculation at hand.

To find ψ0(Js), we once again minimize our free energy with respect to ψ2
0, which

yields the condition,

αψ4
0 + βψ6

0 +
1

2

m∗J2
x

e∗
= 0 (6.33)

the solutions of which can be visualized in Fig. 6.5.2 below.

solution .pdf

Figure 6.9: This is the caption

To obtain the maximum of Js, we determine the point of instability given by

∂2∆Gs
∂(ψ0)2

= β − m∗JGLc
2

e∗ψ6
0

(6.34)

where ∆Gs = Gs − Gn, and the instability occurs at

ψ2
0(JGLc )

ψ∞
=

2

3
(6.35)
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and

JGLc =
2

3
√

3

ψ2
∞ e
∗}

m∗ ξ
(6.36)

as before.

6.5.3 Depairing in a multiply connected superconductor

Depairing in multiply connected superconductors has some special twists. First,
when a superconductor is multiply connected, under certain conditions, it permits
independent control of the velocity of the pairs. Second, it leads to a very interesting
phase diagram for the superconductor in an applied magnetic field – the so-called
Little-Parks effect.

Velocity control

Consider a thin (d < λ), hollow cylinder in a parallel applied field.

in hollow cylinder.pdf

Figure 6.10: This is the caption

As we have shown previously, the field in the interior of the cylinder is given by

hi =
Ha

(1− dr0/λ2)
(6.37)

From fluxoid quantization, we have
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∮
(m∗vs +

e∗

c
A) · dl = nh (6.38)

which implies that

2πr0c

e∗
m∗vs + Φi = nΦ0 (6.39)

or

vs =
}

m∗r0

(
n− Φi

Φ0

)
(6.40)

From this result, we see that the velocity vs can be controlled by Ha to the
degree that Φi ≈ Φa = πr0

2Ha, which requires dr0/λ
2 << 1. Recall, however, that

as vs → vc, n
∗
s → 0, and therefore λ→∞, which means that the required inequality

is satisfied automatically when the depairing is strong. So, we see that in practice it
is possible to control vs.

Returning now to our free energy density

∆Fs = αψ2
0 +

β

2
ψ4

0 +
1

2
m∗v2

s ψ
2
0 (6.41)

it is convenient to transform to reduced variables, f = ψ0/ψ∞ and v = vs/vc, in
which case the free energy density becomes

∆Fs =
H2
c

4π
(− f 2 +

1

2
f 4 + v2f 2) (6.42)

Now substituting f 2 = (1 − v2) corresponding to the free energy minima, we
arrive at

∆Fs(v) = −H
2
c

8π
(1− 2v2 + v4) (6.43)

which is depicted in Fig. 6.5.3 below, where we see that as v → 1, the condensation
energy of the superconductor is continuously depleted. Note, however that the curve
shown is not a simple parabola, as it would be in the London limit. The exact shape
reflects the gradual depairing.
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Figure 6.11: This is the caption
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6.5.2 Behavior at fixed current density

In the case that the current density is the independent thermodynamic variable, we
must use the Gibbs free energy. For our filamentary superconductor, we have, using
Gs = Fs − (m∗/e∗)vsJs,

Gs
S

=
Gn
S

+ αψ2
0 +

β

2
ψ4

0 +
1

2
m∗v2

s ψ
2
0 −

m∗

e∗
vsJs (6.31)

or

Gs
S

=
Gn
S

+ αψ2
0 +

β

2
ψ4

0 −
1

2

m∗J2
s

e∗ψ2
o

(6.32)

Fig. 6.5.2 shows the functional dependence of Gs/S, from which it is readily seen
that, for any 0 < Js < JGLc , there are two solutions (extrema) for ψ0, one stable and
the other unstable. The unstable solution corresponds to the high velocity side of
the Js vs vs curve in Fig. 6.7 above.

for depairing.pdf

Figure 6.8: This is the caption

But the significance of Fig. 6.5.2 is far greater than simply confirming that,
for a given Js, there are two solutions for ψ0. It shows that the pair current in a
superconductor is only metastable to a collapse of ψ0 to zero. Of course, strictly
speaking, for our filament in the thermodynamic limit (infinitely long filament) the
energy barrier for a uniform collapse, which is proportional to the length of the
filament, is infinite.

But what if we were to relax the assumption that |ψ| is constant along the length
of the filament, and allow local fluctuations? As we shall analyze later in detail
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when we deal with fluctuations in superconductors, in this case the energy barrier
for a filament becomes finite and locally |ψ| can fluctuate to zero. But if |ψ| →
0, Js also goes to zero, and superconductivity will reform. Rougly speaking, the
superconductor would find itself at the origin in Fig. 6.5.2, and ψ0 would naturally
increase toward ψ∞ The actual picture is more subtle than this, but the notion of
a dynamic cyclic state is basically correct and is part of the story about how we
understand resistance in superconductors. Needless to say, we will return to such
important issues in great detail. For now, let us simply complete the details of the
calculation at hand.

To find ψ0(Js), we once again minimize our free energy with respect to ψ2
0, which

yields the condition,

αψ4
0 + βψ6

0 +
1

2

m∗J2
x

e∗
= 0 (6.33)

the solutions of which can be visualized in Fig. 6.5.2 below.

solution .pdf

Figure 6.9: This is the caption

To obtain the maximum of Js, we determine the point of instability given by

∂2∆Gs
∂(ψ0)2

= β − m∗JGLc
2

e∗ψ6
0

(6.34)

where ∆Gs = Gs − Gn, and the instability occurs at

ψ2
0(JGLc )

ψ∞
=

2

3
(6.35)
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and

JGLc =
2

3
√

3

ψ2
∞ e
∗}

m∗ ξ
(6.36)

as before.

6.6 Multiply connected superconductors

Depairing in multiply connected superconductors has some special twists. First,
when a superconductor is multiply connected, under certain conditions, it permits
independent control of the velocity of the pairs. Second, it leads to a very interesting
phase diagram for the superconductor in an applied magnetic field – the so-called
Little-Parks effect.

6.6.1 Velocity control

Consider a thin (d < λ), hollow cylinder in a parallel applied field.

in hollow cylinder.pdf

Figure 6.10: This is the caption

As we have shown previously, the field in the interior of the cylinder is given by

hi =
Ha

(1− dr0/λ2)
(6.37)
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From fluxoid quantization, we have∮
(m∗vs +

e∗

c
A) · dl = nh (6.38)

which implies that

2πr0c

e∗
m∗vs + Φi = nΦ0 (6.39)

or

vs =
}

m∗r0

(
n− Φi

Φ0

)
(6.40)

From this result, we see that the velocity vs can be controlled by Ha to the
degree that Φi ≈ Φa = πr0

2Ha, which requires dr0/λ
2 << 1. Recall, however, that

as vs → vc, n
∗
s → 0, and therefore λ→∞, which means that the required inequality

is satisfied automatically when the depairing is strong. So, we see that in practice it
is possible to control vs.

Returning now to our free energy density

∆Fs = αψ2
0 +

β

2
ψ4

0 +
1

2
m∗v2

s ψ
2
0 (6.41)

it is convenient to transform to reduced variables, f = ψ0/ψ∞ and v = vs/vc, in
which case the free energy density becomes

∆Fs =
H2
c

4π
(− f 2 +

1

2
f 4 + v2f 2) (6.42)

Now substituting f 2 = (1 − v2) corresponding to the free energy minima, we
arrive at

∆Fs(v) = −H
2
c

8π
(1− 2v2 + v4) (6.43)

which is depicted in Fig. 6.6.1 below, where we see that as v → 1, the condensation
energy of the superconductor is continuously depleted. Note, however that the curve
shown is not a simple parabola, as it would be in the London limit. The exact shape
reflects the gradual depairing.
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Figure 6.11: This is the caption

6.6.2 Phase diagram – The Little-Parks effect

Depairing in a multiply-connected superconductor has a very interesting physical
effect on the phase diagram of the superconductor. Consider the cylinder in the
normal state and ask at what temperature will the cylinder go superconducting as
the temperature is reduced. Since

vs =
}

m∗r0

(
n− Φi

Φ0

)
(6.44)

it follows that for Φi 6= nΦ0, the superconducting state must form at finite pair
velocity. Thus, Tc must be reduced to permit enough condensation energy to com-
pensate for the needed kinetic energy. At the transition λ → ∞, and therefore
Φi = Φa = Haπr0

2, and the magnetic field energy term in the free energy is zero.
Under these conditions,

∆Fs(Φa) = αψ2
0 +

β

2
ψ4

0 +
1

2
ψ2

0m
∗
( }
m∗r0

(n− Φa

Φ0

)
)2

(6.45)

or

∆Fs(Φa) =
(
α− }2

2m∗r2
0

(
n− Φa

Φ0

)2)
ψ2

0 +
β

2
ψ4

0 (6.46)

from which it is obvious that the reduced Tc(Φa) is governed by the relation

α0

(Tc(Φa)− Tc0
Tc0

)
− }2

2m∗r2
0

(
n− Φa

Φ0

)2

= 0 (6.47)
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defined by the condition that the coefficient of the ψ2
0 term in the free energy goes

through zero. Here Tc0 is the transition temperature in zero applied field.

Rearranging terms, we arrive at

Tc(Φa/Φ0)

Tc0
= 1−

(ξ(0)

r0

)2(
n− Φa

Φ0

)2

(6.48)

which leads to the phase diagram shown below in Fig. 6.12 . This oscillation in the
Tc of the cylinder is known as the Little-Parks effect. Note that if ξ(0) > 2r0, Tc(Φa)
can go all the way to zero, leading to the reenterant phase diagram also shown in the
figure. This is a striking result. It says that, under these conditions, in an increasing
applied field at zero temperature, the cylinder alternately goes normal and then
superconducting again, each time forming in a higher quantum state indexed by n.
Because ξ(0) can exceed a micron or so in some low temperature superconductors,
this effect is in fact observable.

Another interesting perspective on the behavior of a superconducting cylinder is
obtained by considering the free energy density as a function of Φa/Φ0, as shown in
Fig. 6.13 below.

As is evident, for ξ(0) < 2r0, the cylinder has multiple metastable states corre-
sponding to different quantum numbers n. So, under this condition, if we increase
Φa, the system may or may not make a transition to the next quantum state at
Φa = Φ0/2, depending on how such a transition may be nucleated. Such metastable
states can be quite stable, as evidenced by the stability of persistent currents in rings
discussed in Section 1.1. However, when ξ(0) > 2r0, there is no question that the
transitions (n→ n + 1) occur regularly as Φa increases. In any event, as this figure
makes clear, the decay of persistent currents is associated with transitions between
the quantum states of the system. We return later in these notes to the mechanism
of these transitions.

6.7 Strong field effects in the Meissner state

In the Meissner state, where there is no flux penetration, we have superconductivity
in its purest form. And, as we have seen, for weak fields and current densities, the
Meissner state is well described by the London theory. On the other hand, as the
applied field increases, so to does the current density near the surface, and depairing
arises. To see this, recall that the critical current density at the surface of a type 1
superconductor in a field Ha = Hc is given by
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Figure 6.12: This is the caption

Js =
c

4π

Hc

λ
(6.49)

which is comparable to the GL depairing critical current density

JGLc =
2

3
√

3

ψ2
∞ e
∗}

m∗ ξ
=

4

3
√

6

c

4π

Hc

λ
(6.50)

Therefore, a complete description of the Meissner state requires a theory that
goes beyond the simple London theory. However, as we shall now show, it is not
necessary to go to the full GL theory. It is possible to modify slightly the London
theory to account for these strong field effects.

Let us begin with the full GL free energy density written in reduced units
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energy vs phi-suba.pdf

Figure 6.13: This is the caption

∆Fs =
α2

β

(
− |f |2 +

1

2
|f |4 + ξ2|(−i∇− e∗

}c
A)f |2

)
(6.51)

Examining the kinetic energy term, we see that

ξ2
∣∣∣(−i∇− e∗2

}c
A)f

∣∣∣2 = ξ2
(

(∇|f |)2 + f 2(∇φ− e∗

}c
A)2
)

(6.52)

Now as vs → vc, depairing arises near the surface over a length scale λ. Therefore,
the energies involved in the kinetic energy are of order
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ξ2
(1

λ
+
m∗2v2

c

}2

)
=
ξ2

λ2
+ 1 (6.53)

which shows that we can neglect the gradient term and keep only the classical kinetic
energy term, particularly since λ diverges as vs → vc.

∆Fs =
α2

β

(
− f 2 +

1

2
f 4 + f 2(∇φ− e∗

}c
A)2
)

(6.54)

Clearly, the following situation now prevails. We have essentially the London
limit but where the density of pairs undergoes depairing according to the equation
f 2 = (1 − v2), and where v is the reduced velocity. The net result is a non-linear
London theory in which λ = λ(f 2) is determined self-consistently with the pair
velocity v. Obviously, under these conditions the decay of the field and current
density in the superconductor is no longer exponential.

6.8 The Josephson effect and weakly coupled su-

perconductors

The Josephson effect is one of most profound consequences of the macroscopic quan-
tum nature of superconductivity. And, it is actually very simple. Consider two
superconductors that are brought into weak electrical contact, such that Cooper
pairs can pass back and forth between the two superconductors. Before establishing
contact, the two superconductors are independent and have independent quantum
phases (for simplicity we ignore fields and currents internal to the two supercon-
ductors). Once contact is made, they must become one superconductor with one
phase. Viewed this way, the Josphson effect is simply that process by which two
superconductors couple their quantum phases in the presence of a weak coupling.
The situation is illustrated in Fig. 6.14 below.

6.8.1 The Josephson equations

To model this process requires only a simple extension of the GL theory. For suffi-
ciently weak coupling, we can expand the coupling energy in a Taylor series expansion
in terms of the difference between the pair wave functions of the two superconductors.
Keeping only the leading term, which defines weak coupling, we have

FJ = η|ψ1 − ψ2|2 (6.55)
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of Josephson coupling.pdf

Figure 6.14: This is the caption

where for the moment, we assume the coupling occurs at a point. Here η is a
phenomenological coefficient that gauges the strength of the coupling. Clearly, this
difference term is nothing more than the discrete analog of the gradient term in the
GL free energy.

Assuming identical superconductors (|ψ1| = |ψ2|), and writing the ψ’s in terms
of their modula and phases, the Josephson coupling energy can be written

FJ = η|ψ|2(1− cos∆φ) = FJ0(1− cos∆φ) (6.56)

where ∆φ is the difference in the phases across the junction.

Thus we are led to the result that the coupling energy is a periodic function of
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the difference is phases across the junction. This is the Josephson effect. Moreover,
we emphasize that this is a completely general result with no reference to the specific
nature of the weak coupling. It can be due to tunneling, the proximity effect, a point
contact or any other means of weak coupling.

To determine the current through the junction is a straightforward application
of the thermodynamic relation

I =
e∗

}
dF

d(∆φ)
(6.57)

derived in Section 4.5
The result is

I =
e∗

}
FJ0 sin ∆φ = IJ0 sin ∆φ (6.58)

where IJ0 = (e∗/})FJ0 and has the physical interpretation as the critical current of
the junction. The periodic nature of FJ(∆φ) and IJ(∆φ) are illustrated in Fig. 6.15,
which also shows the configuration of the two pair wave functions on the two sides
of the junction as the phase difference evolves.

dependence of F and J.pdf

Figure 6.15: This is the caption

To include the effect of magnetic fields, recall that it is only necessary to replace
∆φ by the gauge invariant phase difference

γ = ∆φ− e∗

}c

∫ 2

1

~A · ~dl (6.59)
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and where the time rate of change of γ is related to the voltage across the junction
by

dγ

dt
=
e∗

}c
V (6.60)

The physical properties of Josephson junctions that follow from the Josephson
equations derived here are truly extraordinary. We will return to these properties in
detail in Chapter xxxx.

In closing this discussion, we note that the results above generalize immediately
to junctions that are not point junctions. One simply replace the current IJ(γ) by
the current density JJ(γ(x, y)) where x and y are the coordinates in the plane of the
junction. In this case the Josephson coupling energy can be though of as an interface
energy between the two superconductors.

6.8.2 Some specific types of junctions

The derivation of the Josephson effect above is completely general. It is helpful in
deepening understanding to consider in addition some explicit examples. Here we
consider coupling via the proximity effect, and through a short filamentary super-
conductor.

Proximity effect Josephson junctions

We have already discussed the proxmity effect. Our task here is simply to apply that
knowledge to and SNS Josephson junction. Consider a planar junction as shown
schematically in cross section in Fig. 6.16 . Assuming a proximity effect model for
the N region, we have immediately that in N , ψn is governed by the differential
equation

ξ2
n

d2ψn
dx

= ψn (6.61)

where ξn is the normal state coherence length.
Clearly, in N the pair wave function can be written in general

ψn(x) = Ae−x/ξn +Bex/ξn (6.62)

where A and B are complex coefficients to be determined from the boundary condi-
tions. We take the boundary conditions just on the N side of the two SN interfaces

ψn(0+) = ψn1 and ψn(l−)ei∆φ (6.63)
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Josephson junction schematic.pdf

Figure 6.16: This is the caption

where ∆φ is the phase difference across the junction.
Using these boundary conditions, we get

ψn(x) = |ψn(x)|eiφ(x) =
|ψn1| sinh(l − x)/ξn + |ψn2| sinh(x/ξn)ei∆φ

sinh(l/ξn)
(6.64)

which, in the limit l >> ξn, has the intuitive form

ψn(x) = |ψn1| e−(l−x)/ξn + |ψn2| e(−x/ξn)ei∆φ (6.65)

i.e., complex decaying exponentials from both SN interfaces.

wave function at O and Pi.pdf

Figure 6.17: This is the caption

The behavior of ψn(x) for ∆φ = 0, π is shown in the Fig. 6.17 below. Note
that in both cases Js = 0, and that for ∆φ = π, ψn(x) goes through zero inside
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the junction. Indeed, in general, ψ must go through zero for ∆φ = π, no matter
how the coupling is achieved. This follows from the fact that if Js = 0, there can
be no spatial gradients of φ and therefore ψ can be taken as real. But if this real
ψ must go from positive to negative as it crosses the junction, it follows necessarily
that ψ must be zero somewhere inside the junction. And, indeed, this characteristic
is central to the physics of a Josephson junction. How else could the properties be a
periodic function of ∆φ? For a more elaborated discussion of this point, see Section
xxx below on the distinction between phase winding and phase slippage.

Given the pair wave function, it is straight forward to calculate the current density
in the junction

Js(x) =
e∗}
m∗

Im(ψ∗(x)∇ψ(x)) (6.66)

=
e∗}
m∗
|ψn1||ψn2|

ξn

1

sinh(l/ξn)
sin ∆φ = JJ0 sin ∆φ (6.67)

which is independent of x as required by current conservation.
In the limit l >> ξn, this reduces to

=
e∗}
m∗
|ψn1||ψn2|

ξn
e−l/ξn sin ∆φ (6.68)

which, as expected, is periodic in ∆φ, and which shows explicitly that the junction
critical current density falls off exponentially with the thickness of the junction. Also,
note that although Eqn xxx above gives an explicit expression for JJ0, it is written in
terms of ψ on the N sides of the two SN boundaries. To know these values in terms
of ψ∞ in the superconductors requires knowledge of the value of A in the proximity
effect boundary conditions introduced in Section 6.3, which, in general, we do not
know. In practice, it is best to take JJ0 as an experimental parameter.

Short superconducting bridge with rigid boundary conditions

As our second example, we take a short superconducting bridge (filament of length
l < ξ(T )) between two massive superconducting banks. This entire structure is one
superconductor, but still it acts as a weak link, as we shall see. To model this case,
we use the GL theory to calculate ψ along the bridge using so-called rigid boundary
conditions. The term rigid refers to the fact that when a one dimensional super-
conducting filament is in contact with large (three dimensional) bank, the pair wave
function in the bank is unperturbed by the behavior in the bridge. Mathematically,
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this means that there is no healing of ψ in the banks, and we can take ψ = ψ∞ (with
a possible phase difference) as the boundary condition at the two ends of the bridge.

Consider now the free energy of the filament in reduced units,

FJ = S

∫ +l/2

−l/2
dx

H2
c

4π

(
− |f |2 +

1

2
|f |4 + ξ(T )2|∇f |2

)
(6.69)

For a phase difference of ∆φ across the bridge, the (symmetrized) boundary
conditions become

f(−l/2) = e−i∆φ/2 and f(l/2) = e+i∆φ/2 (6.70)

Clearly, as f varies across the bridge in response to the phase difference, the
kinetic energy dominates the free energy density

ξ2|∇f |2 → O(ξ/l)2 >> 1 (6.71)

Under these conditions, the first GL equation reduces to

∇2f = 0 (6.72)

which has the solution

f = A+Bx (6.73)

where again A and B are complex coefficients to be determined by the boundary
conditions.

Straight forward manipulation leads to

f(x) =
−2x+ l

2l
e−i∆φ/2 +

2x+ l

2l
ei∆φ/2 (6.74)

which is illustrated in Fig. 6.18 below and can be visualized as a straight line between
the pair wave functions on either end of the bridge. Note also that just as for the
proximity junction case, ψ(x) goes through zero for ∆φ = π, as we argued before it
must do in general.

And, once again, given ψ(x) = ψ∞f , Js can be directly calculated

Js(x) =
e∗}
m∗

Im(ψ∗(x)∇ψ(x)) (6.75)

= JJ0 sin ∆φ (6.76)

fix equation



94CHAPTER 6. PHYSICAL CONSEQUENCES OF THE GINZBURG-LANDAU THEORY

bridge wave function.pdf

Figure 6.18: This is the caption

6.8.3 Josephson coupling between non-s-wave superconduc-
tors

As we have emphasized, the Josephson effect is fundamentally a phenomenon associ-
ated with the interface between two superconductors. Therefore, the bulk symmetry
arguments that make the GL theory the same independent of the orbital state of
the pairs themselves do not apply. Indeed, as we shall show, the symmetry of the
internal structure of the pairs enters fundamentally into the Josephson coupling.

To see this, let us go back to our expression for the pair wave function

ψsc = Ylm(θ, φ)ψ(r) (6.77)

In terms of ψsc, the Josephson coupling energy becomes

FJ(∆φ) =

∫
d cos θ1dφ1d cos θ2dφ2F

′
J(ψsc1 − ψsc2) (6.78)

where

F ′J(∆φ; θ1, φ;θ2φ2) = η′(θ1, φ1; θ2, φ2)|Yl1m1ψ1 − Yl2m2ψ2|2 (6.79)

The essential part of the Josephson coupling involves the cross terms between
ψsc1 and ψsc2, and it is just these terms that reflect the internal nature of the pairs.
Specifically, the phase difference dependent part of F ′J(∆φ)

= η′(θ1, φ1; θ2, φ2)
(
Y ∗l1m1

Yl2m2ψ
∗
1ψ2 − Yl1m1Y

∗
l2m2

ψ1ψ
∗
2

)
(6.80)
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which contains the information about how the internal structure of the pair wave
function effects the coupling from one superconductor to the other. After integrating
over the internal coordinates of the pairs, this becomes

= Re(η ψ∗1ψ2) (6.81)

where

η =

∫
d cos θ1dφ1d cos θ2dφ2

(
Y ∗l1m1

(θ1, φ1) η′(θ1, φ1; θ2, φ2)Yl2m2(θ2, φ2)
)

(6.82)

which contains the information about how the internal wave functions of the pairs
”overlap” across the junction. The details here are obviously complicated and depend
on the microscopic processes at the interface. But, some intuitive insight can be
obtained from the cartoons shown below, which illustrate the situation for coupling
between two s-wave superconductor and an s-wave and a d-wave superconductor.
For simplicity, the two cartoons illustrate coupling between two two-dimensional
superconductors. By simple symmetry considerations, one can see that in some
cases there will be Josephson coupling and in others not.

Josephson coupling.pdf

Figure 6.19: This is the caption
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Josephson couling.pdf

Figure 6.20: This is the caption




