
Impurity states and marginal 
stability of  unconventional 

superconductors

A.V.Balatsky(LANL)

• local =atomic or coherence length scale
• impurity or defect
•Impurity states inconventional supercondcutors
• Impurity states in unconventional superconductors
• Impurity states in  pseudogap state

http://theory.lanl.gov
Rev Mod Phys, v 78, p 373 (2006)

http://theory.lanl.gov/�


See also Peter Hischfeld lectures



Motivation 1

Impurities as a local probe of the symmetry of the 
superconducting order parameter:
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Zn atoms in 
Bi2Sr2Ca(Cu1-xNix)2O8+δ

S.H. Pan et al, Nature (2000)

Four-fold symmetry,
aligned with the gap nodes



Motivation 2
Impurities as a probe of the Pseudogap state of 
high-Tc superconductors



Motivation 3
Most of the  theory and experiment on 
conventional superconductors was done *before*
Local probes, like Scanning Tunneling Microscopy were
Invented.

A lot of views have had “calcified” into standard 
Textbook wisdom. 

I will show some examples where local probes bring in
New and unexpected perspective, sometime new results.



Brief history
1911 – H. Kamerlingh-Onnes: 

superconductivity in
mercury,  Tc = 4K

1933 – Meissner effect: 
expulsion of magnetic field

1957 – Bardeen-Cooper-Schrieffer 
(BCS) theory

1962 – Josephson effect
1986 – first high-Tc superconductor, 

LBCO Tc = 35K
1987 – YBCO, Tc = 93K – warmer than liquid N
1995 – Hg0.8Tl0.2Ba2Ca2Cu3O8.33     Tc = 138K



Superconductivity primer
Metal Superconductor
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Local Probes:Scanning tunneling microscopy/spectroscopy
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Spectroscopic map (LDOS map) can 
be obtained.



Bogoliubov-Nambu Hamiltonian  
background

*
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Bogoliubov angle measures the relative weight between particle 
And hole component in Bogoliubov deGennes quasiparticle
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Bogoliubov Quasiparticles
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Tunneling into SC
• Particle and hole component in tunneling 

sample the same Bogoliubov Nambu 
quasiparticle. The only difference is relative 
weight of these two processes.

Ground state 0Ψ

Electron spin down 
Tunneling out

Bogoliubov excitation
0 ( ) 0n i i i in

i

v c u v c cγ ∗ ∗ ∗
−↑ ↓Ψ = +∏



Tunneling into SC
• Particle and hole component in tunneling 

sample the same Bogoliubov Nambu 
quasiparticle. The only difference is relative 
weight of these two processes.

Ground state 0Ψ

Electron spin up 
Tunneling in

Bogoliubov excitation
0 ( ) 0n i i i in

i n

u c u v c cγ ∗ ∗ ∗
−↑ ↑

≠

Ψ = ∗ +∏
Physically one is left with the same state (~1/N)
As a result of tunneling. Amplitudes (u vs v) are 
different



Mind trick



Mind trick



Mind trick



Mind trick



Lets do it again



Lets do it again



Lets do it again



Lets do it again



You noticed!
•Few points on overall approach in this lecture:

•Impurities and defects are interesting.
•They are telling us a story about host
•They can be useful as a markers of new physics
•Controlled impurity physics is at the core of multibillion $
semiconducting industry
•Impurity states enable the new functionality
, that is used in devices. Case; my computer that allows me
to project this lecture.
•Impurities can be placed deliberately to destroy the state 
we are trying to understand
•From response of unknown state to impurities we can
infer what “it is made of”
•Not average description but one at a time. Averaged quantities 
can be useful. But they can be misleading. 



Conventional, s-wave 
superconductors (BCS)



T-matrix approximation
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Bound state in 2D metal due to 
weak attarctive potential

energy

size

Local DOS



Same prcedure is applied to SC 
case, except Green’s functions 

are now matrices



Theory of impurity states in s-
wave SC Yu Lu(65), Shiba(68)
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Imp S + Cooper pairs

|0>

|imp>

continuum

Ground state

Bound state formed due to magnetic gain

Bound state is FULLY spin polarized !



Intrinsic pi junction



N

E∆

N

E∆
Weak impurity Strong impurity

Remark about Abrikosov-Gorkov theory



N

E∆

N

E∆
Weak impurity Strong impurity

At finite imp concentration
N

E∆

N

E∆
Imp band growth in Abrikosov-Gorkov
theory; one parameter: Nimp N(0) J S(S+1)

General case:
Gapless SC much sooner
Lifshitz tails and gapless
Balatsky, Trugman, PRL, 97



Predicted behavior only occurs for weak impurities:

N

E∆



Predicted behavior only occurs for weak impurities:

N

E∆



Predicted behavior only occurs for weak impurities:

N

E∆

Gapless
After a large 
concentration is added



Gapless SC region
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In Reality Imurity states can be at any energy
Energy of a single impurity state is a center of impurity band



A.Yazdani et al, Science(1997)

Wave function of imp state
Gd, Mn atoms on Nb surface
(Tc = 7K)

Impurity intragap
States on Nb 
Superconductor.
Gold has no effect on SC state



Lifshitz Tails and gapless supercoductivity in s-wave
Case.

Rare fluctuations are the ones that are nominally very unlikely. 
However is the mean exectation of some observable is zero and
Fluctuaion will render this expectation nonzero then no matter
how low probability is this fluctuation is important 
(hugely important in fact) = 0.0001/0-> infty

Rare fluctuations in the impurity distribution will make any
s-wave superconductor gapless, regardless how low impurity
Concentration is. It is gapless albeit with  exponentially small 
Density of States.

Rev Mod Phys, v 78, p 373 (2006)



Band in case of weak
impurity scattering J <<1

Band in case of strong
impurity scattering, J~1

Average theory of impurity scattering depend on
Only scattering rate 2 2
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From textbooks does
not capture this 
ditsinction



Lifshits tails or rare fluctuations



Lifshitz tails in SC make it  gapless s wave 
superconductivity: 
rare but important fluctuations are the ones where 
local concentration of impurities exceed critical and
Locally we have a puddle of normal metal inside 
SC. These regions always exist no matter how small 
probability is. 

Gapless SC 
region

Tail at E=0 grows with doping



Unconventional Superconductors: 
d-wave (High Tc supercondcutors)



Experimental Phase Diagram
of HTSC

Doping, x

T

SC

AF

T*

Tcr

AF – antiferromagnet 
SC – d-wave superconductor
Tcr – onset of spin fluctuations
T* – opening of pseudogap

n = 1



YBCO structure
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Earlier work: d-SC Impurity Resonances
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Impurities can be a useful tool
to investigate
the nature of an unknown state



Theory of impurity resonance in 
d-wave SC

Balatsky, Salkola, Rosengren (95)

N

E∆ Nonmagnetic
And magnetic imp

Hint = U n(0)



Theory of impurity resonance in 
d-wave SC

Balatsky, Salkola, Rosengren (PRB,95)
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Theory of impurity resonance in 
d-wave SC

Balatsky, Salkola, Rosengren (PRB,95)
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Theory of impurity resonance in 
d-wave SC

Balatsky, Salkola, Rosengren (95)
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Universal:Similar states will be created 
in p,f,g…states with gap nodes.



SI-STM Image at E=–1.5mV0 560 Å

0
56

0 
Å

!

Nature 403, 746 (2000).

Bi2Sr2Ca(Cu1-xZnx)2O8+d : x ≅ 0.2%

Zn Impurity-State

~20
Zn atoms

Cross shaped
Impurity state
(due to 4 fold gap



Data by A. 
Matsuda

NTT Research, 
Japan



N(r) ~ 
21/ r

Remains to be seen experimentally  if this is true in 
graphene



Motivation 2: magnetic vs
nonmagnetic impurities

Impurities as a probe of the high-Tc mechanism
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Zn, non-magnetic, S = 0
suppresses superconductivity

Ni, magnetic, S = 1, does not
suppress superconductivity

ε = -1.5 meV ε = 9 & 18 meV



Impurity states in ANY Dirac point 
materials



Impurity states in ANY Dirac point 
materials



Impurity states in ANY Dirac point 
materials



Impurity states in ANY Dirac point 
materials



Local Density of states in Dirac Materials:

Nonmagnetic impurity in d-wave SC and in graphene will have
similar  r  dependence
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Model
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Ni,Theory vs. Expt – Images  

9 mV - 9 mV

Theory:
Vimp= t ; Simp= 0.4 t;
doping 16%

Experiment:
E.W. Hudson , et.al.



Zn: Strong potential imp 

Theory
Vimp= -10 t = -4 eV
doping 16%

Experiment
S.H. Pan et al Impurity site

has to be bright!!!



Ni, weak potential + spin imp
Theory:

Vimp= t ; Simp= 0.4 t;
doping 16%
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Experiment:
Impurity level splitting

caused by Ni spin

ε1 =0.052 t (21 mV), ε2 =0.037 t (15 mV)

ε = 9 & 
18 meV



Potential impurity 
in BSCCO (0.16 doping)

Ni
Zn

Ni – weak repulsive
8 electrons in 3d

Zn – strong attractive
10 electrons in 3d
(filled shell)



Gap is suppressed on the atomic scale
Not only on scale of coherence length as GL would
Lead us  to believe. 



Impurity as a probe of
Pseudogap (PG) Regime

Vanishing of density of states at the fermi level is sufficient
for formation of impurity state.

Pseudogap (Loram)

H. Kruis, I. Martin and AVB
PRB, 2002



T = U/(1-G0(Ω)U)
Hence the pole at G0(Ω) = 1/U 

H. Kruis et al, PRB 64, 
p 054501(2001); RMP 78  p37



Role of the Interlayer 
Tunneling

Ψij – value impurity state 
wavefunction on site (i,j)

Intensity in CuO layer:
Aij = | Ψij |2

Intensity in BiO layer:
Aij = | Ψij-1 + Ψij+1 - Ψi-1j - Ψi+1j|2 ~ | cos kx – cos ky |

Direct tunneling (tip to CuO) is exponentially suppressed: 
t ~ exp(-r/d), d~0.5A

Martin, Balatsky, Zaanen (2000)



tip

Bi Zn

Cu
eV

Hopping via virtual states on Bi and Zn(Ni)

One uses the easiest available path. In this case
direct tunneling into Cu-O plane is exponentially
suppressed.

( ) ( ) ( )
States ofDensity seen  surface

-,, t, ωφφφω rNdrNeff ∫=



BiO vs. CuO plane image

Experiment!



Zn: Strong potential imp

Theory
Vimp= -10 t = -4 eV
doping 16%

Experiment
S.H. Pan et al Impurity site

has to be bright!!!



BiO vs. CuO plane image

Experiment!



Why local nanoscale probes are 
useful



Examples ( incomplete list)

A. Yacobi
J. Stroscio

MIT in VO2  Basov
Science, v 318, 
1759 (2007)

Gap inhomogeneity
In high Tc oxides
J.C. Davie, S.H. Pan, A. 
Yazdani

Gap inhomogeneity in 
novel FeAs 
superconductors, 
J. Hoffman et al

URu2Si2inhomo
geneity in dI/dV
at 35 mev
JC Davis et al
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Cren, et al, PRL (2000)
Bi2212 film



YBCO - BaO plane                BSCCO - BiO plane
YBCO

300 Å 280 Å
Do equivalent nanoscale electronic structure variations exist 
in YBCO? Probably not. If they do they are probably 
weaker and more ordered.

BaO vs BiO



Impusity states
and STM on Graphene

HOPG

Y. Niimi et. al., PRL 97, 236804
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Conclusion

Impurity and defects in correlated states
Are important in that  enable new properties

Or make identification of an unknown state easier

One would need right set of tools: experiment…

Theory: investigate local features, no average lifetime
Average scattering potential etc.

A lot of correlated materials do show variety of
inhomogeneous competing states.



Thanks

M. Salkola
I. Martin
J.X. Zhu
I. Vekhter
J.R.Schrieffer
D. Scalapino
P. Kumar 
J. Zaanen
J. Smakov
J.C. Davis and 
Co
D. Morr
A. de Lozanne
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