Band structures of known families of HTSC cuprates;

can we engineer them to get further?

Xiaoping Yang, P. Hansmann, A. Toschi, G. Khaliullin, K. Held

The crackpot contribution at the end of an otherwise serious school
The quest for high-temperature superconductivity
In order to get better superconductors, do we need to understand the mechanism?

and if we do, does it help?
What can be learned about high T\textsubscript{c} from the LDA?

1988 - 91 LDA+U calculations for undoped compounds. Parameters of the 3-band Hubbard model supporting the Emery and t-J models.

1988 - 92 Fermi surfaces for many cuprates. Agreement with positron anihilation and early ARPES.

1994 - 95 Extract low-energy TB models explaining the "chemistry". Predict \(t'/t \), bi-layer splitting \(t_{\text{perp}}(k_x,k_y) \propto (\cos k_x - \cos k_y)^2 \) and interplane exch-coupling \(J_{\text{perp}} \propto \int t_{\text{perp}}(k)t_{\text{perp}}(k+Q)dk/U \)

1995 - 96 Phonon frequencies and linewidths for all \(q \)'s in \(s \)- and \(d \)-wave channels. Analytical \(g(k,k') \)

2000- Who cares! ARPES sees the FS and the dressed band structure!

We do, because ARPES from overdoped systems do confirm the LDA FS predictions.

2001 \(t'/t \) for 15-20 families of HTSC; correlation with \(T_{c,\text{max}} \)

2003- Numerically exact Wannier functions, 1- and 3-band Hubbard Hamiltonians. DMFT, DCA and other many-body calculations.

2009- After 23 years, the mechanism of HTSC remains an unsolved problem
YBa$_2$Cu$_3$O$_7$
$\text{YBa}_2\text{Cu}_3\text{O}_7$

Stoichiometric at optimal doping

LDA

Bi-layer splitting:
La$_{2-n}$Sr$_n$CuO$_4$

Electron count: $+3 \times 2 - n + 11 - 2 \times 4 = 9 - n \rightarrow$ Cu d^{9-n}
Tl$_2$Ba$_2$CuO$_{6+\delta}$
Hussey et al.

Angular magnetoresistance oscillations (AMRO)
Where does this materials dependence come from?

There is presently no accepted theory of high-temperature superconductivity in the cuprates

Electronic structure \rightarrow $H = \sum t_{ij} c_i^\dagger c_j + U \sum n_{i\uparrow} n_{i\downarrow}$
$\text{YBa}_2\text{Cu}_3\text{O}_7$

Stoichiometric at optimal doping

LDA

Bi-layer splitting:
The Materials Trend, PRL 87, 047003 (2001)

Cuprates $3d^{9-x} = 3d_{x^2-y^2}^{1-x}$

LDA conduction-band (x^2-y^2) shapes and ARPES Fermi surfaces for overdoped HTSCs
Which structural elements determine r?
One-orbital LDA Wannier-like function

La_2CuO_4

$T_c = 40 \text{ K}, \ r=0.17$

$\text{HgBa}_2\text{CuO}_4$

$T_c = 90 \text{ K}, \ r=0.33$
One-orbital LDA Wannier-like function

La$_2$CuO$_4$
The materials trend is best understood in terms of a tight-binding model with two orbitals:

\[d = \text{Cu } x^2-y^2 \]
dressed with

\[\text{O } p \]

and

\[s = \text{axial orbital } = \text{Cu } 4s \]
dressed with

\[\text{Cu } 3z^2-1, \]
\[\text{O}_a z, \]
\[\text{La } 3z^2-1, \text{ a.s.o.} \]

The material-dependent parameter is \(\varepsilon_s - \varepsilon_F (>0) \). The smaller it is, the larger is \(r \sim t'/t \).
\begin{align*}
H_4 &
\begin{array}{c|cccc}
\langle d, k \rangle & |d, k\rangle & |s, k\rangle & |x, k\rangle & |y, k\rangle \\
\langle d, k \rangle & \epsilon_d & 0 & 2t_{pd} \sin \frac{k_x}{2} & -2t_{pd} \sin \frac{k_y}{2} \\
\langle s, k \rangle & 0 & \epsilon_s & 2t_{sp} \sin \frac{k_x}{2} & 2t_{sp} \sin \frac{k_y}{2} \\
\langle x, k \rangle & 2t_{pd} \sin \frac{k_x}{2} & 2t_{sp} \sin \frac{k_x}{2} & \epsilon_p & 0 \\
\langle y, k \rangle & -2t_{pd} \sin \frac{k_y}{2} & 2t_{sp} \sin \frac{k_y}{2} & 0 & \epsilon_p \\
\end{array}
\end{align*}
Löwdin downfolding to 2 orbitals:

\[
\begin{align*}
H_4 & \begin{pmatrix}
|d, k\rangle \\
|s, k\rangle \\
|x, k\rangle \\
|y, k\rangle
\end{pmatrix} \\
\langle d, k | & \epsilon_d 0 2t_{pd} \sin \frac{k_x}{2} -2t_{pd} \sin \frac{k_y}{2} \\
\langle s, k | & 0 \epsilon_s 2t_{sp} \sin \frac{k_x}{2} 2t_{sp} \sin \frac{k_y}{2} \\
\langle x, k | & 2t_{pd} \sin \frac{k_x}{2} 2t_{sp} \sin \frac{k_x}{2} \epsilon_p 0 \\
\langle y, k | & -2t_{pd} \sin \frac{k_y}{2} 2t_{sp} \sin \frac{k_y}{2} 0 \epsilon_p
\end{align*}
\]

\[
H_2 (\varepsilon) \begin{pmatrix}
|d, \varepsilon, k\rangle \\
|s, \varepsilon, k\rangle
\end{pmatrix} = \\
\begin{align*}
\langle d, \varepsilon, k | & \epsilon_d + \frac{4t_{pd}^2}{\varepsilon - \epsilon_p} \left(\sin^2 \frac{k_x}{2} + \sin^2 \frac{k_y}{2} \right) \\
\langle s, \varepsilon, k | & \frac{4t_{sp}^2 t_{pd}}{\varepsilon - \epsilon_p} \left(\sin^2 \frac{k_x}{2} - \sin^2 \frac{k_y}{2} \right) \\
\langle x, \varepsilon, k | & \frac{4t_{sp}^2 t_{pd}}{\varepsilon - \epsilon_p} \left(\sin^2 \frac{k_x}{2} - \sin^2 \frac{k_y}{2} \right) \\
\langle y, \varepsilon, k | & \epsilon_s + \frac{4t_{pd}^2}{\varepsilon - \epsilon_p} \left(\sin^2 \frac{k_x}{2} + \sin^2 \frac{k_y}{2} \right)
\end{align*}
\]
Hybridization between x^2-y^2 and axial orbital Cu $4s$, apical O $2p_z$, etc.

Hybridization $\sim (\cos k_x - \cos k_y)^2$
\[H2(\varepsilon) = |d, \varepsilon, k\rangle \quad \frac{4t^2_{pd}}{\varepsilon - \varepsilon_p} \left(1 - \frac{\cos k_x + \cos k_y}{2} \right) \quad \frac{4t_{sp} t_{pd}}{\varepsilon - \varepsilon_p} \cos k_x - \cos k_y \]

\[\langle s, \varepsilon, k | = -\frac{4t_{sp} t_{pd}}{\varepsilon - \varepsilon_p} \cos k_x - \cos k_y \quad \frac{4t^2_{sp}}{\varepsilon - \varepsilon_p} \left(1 - \frac{\cos k_x + \cos k_y}{2} \right) \]

Downfolding to 1 orbital:

\[H1(\varepsilon) = \langle \tilde{d}, \varepsilon, k | H | \tilde{d}, \varepsilon, k \rangle = \]

\[= \varepsilon_d + \frac{4t^2_{pd}}{\varepsilon - \varepsilon_p} \left(1 - \frac{\cos k_x + \cos k_y}{2} \right) + \frac{4t^2_{sp}}{\varepsilon - \varepsilon_p} \left(\frac{\cos k_x - \cos k_y}{2} \right)^2 \]

\[= \varepsilon_d + \frac{4t^2_{pd}}{\varepsilon - \varepsilon_p} \left(1 - \frac{\cos k_x + \cos k_y}{2} \right) + \frac{t^2_{sp}}{\varepsilon - \varepsilon_p} \left(1 - 2 \cos k_x \cos k_y + \frac{\cos 2k_x + \cos 2k_y}{2} \right) \]

\[= \varepsilon_0 - 2t (\cos k_x + \cos k_y) + 4t' \cos k_x \cos k_y - 2t'' (\cos 2k_x + \cos 2k_y) + \ldots \]

\[t = \frac{t^2_{pd}}{\varepsilon - \varepsilon_p}, \quad \frac{t'}{t} \approx \frac{2t_{sp}}{\varepsilon - \varepsilon_p} \quad \frac{t''}{t'} = \frac{1}{2} \equiv r(\varepsilon) \]
From the nearest-neighbor 4-orbital model \((\varepsilon_p, \varepsilon_d, \varepsilon_s, t_{pd}, t_{sp})\) to the longer-ranged 1-orbital model \((t, t', t'', ...)\)
$T_{c \text{ max}} = 40K$, $r = 0.17$

$T_{c \text{ max}} = 90K$, $r = 0.33$

$r = \frac{1}{2} \sin (\pi \Delta \kappa)$
$r = \frac{1}{2} \cos (\pi k_{\Gamma M}/\Gamma M) + \sin^2 \left(\frac{\pi k_{XM}/XM}{2}\right) [2 + \cos (\pi k_{\Gamma M}/\Gamma M)]$

Angular magnetoresistance oscillations (AMRO)

Tl$_2$Ba$_2$CuO$_{6+\delta}$

Hussey et al.

Wannier function for the cuprate conduction band

The materials trend is best understood in terms of a tight-binding model with two orbitals:

\[d = \text{Cu } x^2-y^2 \]

dressed with

\[\text{O } p \]

and

\[s = \text{axial orbital} = \text{Cu } 4s \]

dressed with

\[\text{Cu } 3z^2-1, \]

\[\text{O}_a z, \]

\[\text{La } 3z^2-1, \text{a.s.o.} \]

The material-dependent parameter is \(\varepsilon_s - \varepsilon_F (> 0) \). The smaller it is, the larger is \(r \sim t'/t \).
One-orbital LDA Wannier-like function

La$_2$CuO$_4$

Four-orbital model

Axial

La ε_s

Cu 4s ε_F

O$_c$ 2p$_z$

Cu 3d$_{3z^2-1}$

La$_2$CuO$_4$
One-orbital LDA Wannier-like function
The Materials Trend, PRL 87, 047003 (2001)

- Hg Ba$_2$Ca$_2$Cu$_3$O$_8$
- Hg Ba$_2$Ca Cu$_2$O$_6$
- Tl$_2$Ba$_2$Ca$_2$Cu$_3$O$_{10}^k$
- Tl$_2$Ba$_2$Ca Cu$_2$O$_8$
- Y Ba$_2$Cu$_3$O$_7$
- Hg Ba$_2$Cu O$_4$
- Tl$_2$Ba$_2$Cu O$_6$

- Pb$_2$Sr$_2$Y Cu$_3$O$_8$
- La$_2$Ca Cu$_2$O$_6$
- La Ba$_2$Cu$_3$O$_7$
- La$_2$Cu O$_4$

- Bi$_2$Sr$_2$Cu O$_6$
- Pb$_2$Sr$_2$Cu$_2$O$_6$
- Ca$_2$Cu O$_2$Cl$_2$

- r ~ t'/t
That the axial orbital is the channel for coupling the CuO$_2$ layer to its surroundings is supported by the experimental observations that c-axis transport is strongly suppressed by the opening of a pseudogap with a $(\cos k_x - \cos k_y)^2$-dependence and that the scattering in the normal state has a similar k_\parallel-dependence.

At the same time, the axial orbital is the vehicle for coupling between neighboring oxygens inside the layer. It therefore seems plausible that contraction of the axial orbital around the CuO$_2$-layer, away from the non-stoichiometric layers, will strengthen the phase coherence and thus increase $T_{c\ max}$.

It was completely unexpected that for multi-layer materials, the $T_{c\ max}$ trend is followed the Fermi-surface sheet with the largest r-value, i.e. with the lowest ϵ_{axial} and, hence, with the smallest hole volume.

How r determines $T_{c\ max}$ remains to be understood.
Current approximations to ab initio Density-Functional Theory (LDA) are insufficient for conduction bands with strong electronic correlations, e.g. they do not account for the Mott metal-insulator transition.

On the other hand, LDA Fermi surfaces are accurate for most metals, including overdoped high-temperature superconductors.

Presently, we therefore start with the LDA. For the few correlated bands, we then construct localized Wannier orbitals and a corresponding low-energy Hubbard Hamiltonian. The latter is solved in the Dynamical Mean-Field Approximation.
Low-energy multiband Hubbard Hamiltonian

\[\hat{H} = \sum_{i m \sigma, i' m' \sigma'} \delta_{\sigma, \sigma'} h_{i m, i' m'} c_{i m \sigma} ^\dagger c_{i' m' \sigma'} + \frac{1}{2} \delta_{i, i'} \sum'_{i m m' \sigma \sigma'} U_{i m m'} \hat{n}_{i m \sigma} \hat{n}_{i m' \sigma'} - \text{d.c.} \]

\(h_{i m, i' m'} \) is the LDA one-electron part. For the two-electron, on-site term, we use:

\[
\frac{1}{2} \sum_{m=1} \sum_{m' = 1} \sum_{\sigma} \sum_{\sigma'} U_{i m m'} \hat{n}_{i m \sigma} \hat{n}_{i m' \sigma'} \approx \]

\[U_i \sum_{m} \hat{n}_{i m \uparrow} \hat{n}_{i m \downarrow} + (U_i - 2J_i) \sum_{m \neq m'} \sum_{\sigma \sigma'} \hat{n}_{i m \uparrow} \hat{n}_{i m' \downarrow} + (U_i - 3J_i) \sum_{m \neq m'} \sum_{\sigma, \sigma'} \left(\hat{n}_{i m \uparrow} \hat{n}_{i m' \uparrow} + \hat{n}_{i m \downarrow} \hat{n}_{i m' \downarrow} \right) \]

for two electrons in

same orbital

different orbitals and spins

same spin
Mott transition in cuprate HTSCs

Wannier orbitals and conduction band, LDA

Hubbard model, LDA+DMFT
T=2000K, undoped

U = 2.1
U = 3.0 eV

T. Saha-Dasgupta and OKA 2002
Cuprates $3d^{9-x} = 3d_{x^2-y^2}^{1-x}$

Conduction band LDA

One-band Hubbard model LDA+DMFT

$U = 2.1$ eV
undoped

$U = 3.0$ eV
undoped

10% doped

T. Saha-Dasgupta and OKA 2002
La$_2$CuO$_4$

Axial 4s-like orbital and x^2-y^2
How to make a cuprate Fermi surface out of a nickelate heterostructure, in theory

$3z^2-1 \quad 3d^7 (e_g^1) \quad x^2-y^2$

X. Yang1, P. Hansmann2, A. Toschi2, K. Held2, G. Khaliullin1, O.K. Andersen1

1 Max-Planck-Institut für Festkörperforschung, Stuttgart
2 Institute for Solid State Physics, Vienna University of Technology
Khaliullin’s idea: Make Ni$^{3+}$(d7)-based HTSCs by sandwiching hole doped LaO-NiO$_2$ layers between insulating layers through heterostructuring (orbital engineering)

- The confinement together with the electronic correlations should make it possible to localize or empty the 3z2-1 band thus leaving the conduction electron in the x2-y2 band

- If the 3z2-1 orbital can be manipulated to lie above x2-y2, it might play the role of the axial orbital in the cuprate d9 HTSCs

- Charge disproportionation (d6+d8) must be avoided

Confinement:

Paramagnetic LDA bands in (1 -1 0) plane

Cubic

Mn 3d \(e_g\)

LaMnO\(_3\)

La 4f

La 5d

O 2p

\(\Gamma(000)\) Z(00½) R(10½) A(11½) Z(00½) X(001) M(101) R(111) X(001)

Cubic

LaNiO\(_3\)

\(x^2-y^2\)

\(3z^2-1\)
d^7 nickelates

Simplified e_g conduction-band structure in 2D square lattice:
Ni 4s, La 5d, Al 3p

Ni t_{2g}, O 2p, Al 3s

Cubic

LaNiO₃

x²-y²

3z²-1

1/1

LaAl

Ni 4s, La 5d, Al 3p

(eV)
The Coulomb correlations enhance the crystal-field splitting and simplifies the Fermi surface to one sheet when $\varepsilon_{3z^2-1}(\Gamma) > \varepsilon_F$, i.e. with a shape ($r \sim \frac{1}{2}$), like that in the cuprates with the highest $T_{c_{\text{max}}}$.
Cuprates $3d^{9-x} = 3d_{x^2-y^2}^{1-x}$

Conduction band LDA

One-band Hubbard model LDA+DMFT

$U = 2.1 \text{ eV}$

undoped

$U = 3.0 \text{ eV}$

undoped

10% doped

T. Saha-Dasgupta and OKA 2002
FIG. 3 (color online). Energy levels for the unstrained two-site model with $U = 6.4$ eV as a function of the splitting Δ between the energies of the $3z^2 - 1$ and $x^2 - y^2$ Wannier orbitals. The LDA value of Δ is indicated by the dashed line. O_F (O_{AF}) denotes a configuration with the same (different) orbital(s) on the two sites.
Control by the chemistry (Al, Ti, Sc) of the insulating layers.

Control by lattice constant of the substrate.

1-sheet FS: $5.7 < U < 6.5$ eV

Control by the chemistry (Al, Ti, Sc) of the insulating layers.
Phase diagram of 3D RNiO$_3$ perovskites

FIG. 5. The phase diagram of transition temperatures vs bandwidth W^2 at room temperature. T_{IM} and T_N are taken from Refs. [23,25,29,30]. Lines inside the figure are guides to the eyes. Inset: definition of the angle ω used to obtain $W \sim \cos \omega/(\text{Ni-O})^{3.5}$.

Chemical control by the A and B cations and the thickness of the insulating layer. This is also a tool for avoiding charge disproportionation.
Adding insulating neighbor layers

promissing
Adding a NiO$_2$ nearest-neighbor layer (bilayer) less good
On stock:
(H-U Habermeier)
Thank you for listening

and

thank you to Nicola, Claudia and Mac for organizing this exciting summer school