Stereochemistry of Molecules in Crystals (part 1, 2)

Fumio Toda

Okayama University of Science, Okayama, Japan

key word: solid state, host-guest complex

part 1: statistic aspect part 2: dynamic aspect

part 2: dynamic aspect (I) Thermal cyclization of diallenes in own crystals

1) dimethylenecyclobutene

Angew. Chem. Int. Ed. 1988, 2724.

2) benzodicyclobutadiene

5 min

30 min

Chem. Commun. **1999**, 319. *Eur. J. Org. Chem.* **2000**, 1377.

 Table 1. Calculated (B3LYP/6-31G* and MP2/6-31G*) geometries and relative energies of the isomeres of 2.

	Isomer	Level	R ₁	R ₂	R ₃	R ₄	∆ <i>E</i> /kcal mol ⁻¹
R₁	2a	MP2/6-31G*	1.3943	1.4082	1.5361	1.3456	00
	2b	MP2/6-31G*	1.3898	1.5545	1.3921	1.4587	-3.7
R ₃	2c	B3LYP/6-31G*	1.3944	1.4026	1.5430	1.3456	0
	2d	B3LYP/6-31G*	1.3888	1.5461	1.3916	1.4583	-2.4

3) naphthocyclobutenes

Angew. Chem. Int. Ed. 1994, 1757.

C1-C2 = 1.734(5) Å

Exptl.	1.720 Å
	1.710 Å at 90 K

B3YLP/613G*	1.732 Å	
	M. Kertesz	1997

B3YLP/613G*	1.731 Å	
	P. v. R. Schleyer	1998
throu	ugh bond interaction	n

B3YLP/dz(2d, p)	1.708 Å	
J	. S. Siegel	1998

(II) Phase transitions in crystals

1) photodimerizatin of 2-pyridones

[4+4]

Chem. Commun., 2005, 643; Mendeleev Commun., 2004, 247; Heterocycles, 2004, 383.

A reversible phase transition between photochemically nonreactive and reactive complexes

Scheme 1. Reversible phase transition between photochemically nonreactive and reactive complexes. For clarity host is omitted

Fig. X-ray structure of 8 (top view)

Fig. X-ray structure of the 1:1:1 complex of host:5-methyl-2-pyridone:MeOH (8).

Fig. Packing diagram of **10**.

Fig. Packing diagram of **10**.

Fig. Distances between 5-methyl-2-pyridone molecules in **10**.

3) tetraphenylethene

Table 1. Inclusion complexation of 1 with some guest compounds

	Inclusion complex				
	By recrystallization		By gas	-solid reaction	
Guest	host : g	juest	host : g	juest	<i>t</i> /h
Acetone	chiral	1:2	a	a	168
Cyclohexanone	rac	1:1	<u> </u>	a	168
THF	rac	1:2	chiral	1:2	2
1,4-Dioxane	chiral	1:1	chiral	1:1	24
Benzene	chiral	1:1	chiral	1:1	24
Toluene	rac	1:1	a	a	168
<i>p</i> -Xylene	chiral	1:1	chiral	1:1	24
β -Picoline	rac	1:1	chiral	1:1	168

^a No complexation occurred.

Chem. Comm. 2000, 413.

4) oxoamide

Chem. Lett. 1995, 809.

phase transition

Tetrahedron. 2004, 7767; Chem. Comm. 2004, 1844.

(III) Seed crystals in the solid state

		complex					
	guest	host : guest ratio ^[a]	decomp. (°C)	νOH (cm ⁻¹) ^[b]			
	Et ₂ O	3 : 1	87-108	3419, 3459, 3489			
	Et ₂ O	1:2	40-61	3198			
	OMe (CPME)	1:2	37-74	3198			
	THF	2:3	48-106	3173, 3519			
1	0_0	2:3	61-116	3248			
	AcOMe	3 : 1	83-108	3403, 3463, 3491			
	AcOEt	3 : 1	75-105	3413, 3464, 3490			
	$\sqrt{2}$	1:2	87-128	3366			
	Me ₂ C=O	1:1	70-98	3036, 3404			
	[)=0	1:1	79-107	3321, 3419			
	0=	1:1	87-117	3264, 3417			
	0=	1:2	94-121	3199			
	СОМе	1:2	97-141	3198			

Table 1. Data of inclusion complexes of 3a with various liquid guests.

[a] The ratio was determined by ¹H NMR spectra and TG analysis.

[b] IR spectra were measured by using the ATR (Attenuated total reflection) method.

Scheme 1. Inclusion complexation of 3a and Et_2O by recrystallization of 3a from Et_2O solutions of different concentration.

Figure 1. Crystal structure of the 1:2 complex of 3a and Et_2O (4).

Figure 2. Crystal structure of the 3:1 complex of 3a and Et_2O (5).

Scheme 1. Memory of inclusion pattern.

Scheme 2. Seed crystal experiments in the inclusion complexation between solid host and gaseous Et_2O guest.

Angew. Chem. Int. Ed. 2005, in press.

Table . Inclusion complexation of powdered *rac*-BNO (**3a**) and gaseous guest in the presence of pseudo seed crystal.

guest (3a :guest ratio) in seed crystal	gaseous guest	reaction time (h)	guest (3a :guest ratio) in product
AcOMe (3 : 1)	AcOEt	3	AcOEt (3 : 1)
AcOMe (3 : 1)	Et ₂ O	3	Et ₂ O (3 : 1)
AcOE t (3 : 1)	AcOMe	3	AcOMe (3 : 1)
AcOEt (3 : 1)	Et ₂ O	3	Et ₂ O (3 : 1)
Et ₂ O (3 : 1)	AcOMe	3	AcOMe (3 : 1)
Et ₂ O (1 : 2)	CPME	12	CPME (1 : 2)
CPME (1:2)	Et ₂ O	12	Et ₂ O (1 : 2)
AcOMe (3 : 1)	CPME	12	_
Et ₂ O (3 : 1)	CPME	12	_