

Amphidynamic Materials — Part II

Miguel A. Garcia-Garibay mgg@chem.ucla.edu University of California, Los Angeles

José Nuñez Peter Jarowski Steve Karlen Carlos Godinez T-Alfredo V. Khuong Marino Resendiz Zach O'Brien

Dr. Chris Mortko Dr. Horacio Reyes Dr. Stephanie Gould Dr. Hung Dang Dr. Marcia Levitus Dr. Zaira Dominguez Dr. Carlos Sanrame <u>UCLA</u> Dr. Jane Strouse Dr. Saeed Khan Dr. Robert Taylor Prof. K. N. Houk Prof. F. Hawthorne Prof. Ben Schwartz Dr. Ignacio Martini <u>UC Boulder</u> Prof. John Price Rob Horanski Dr. Laura Clarke

<u>Mexico</u> ENCB Prof. Gerardo Zepeda

CINEVSTAV-IPN Prof. Norberto Farfan Pprof. Rosa Santillan

National Science Foundation

Condensed Phase Matter and Molecular Dynamics

Molecular Motion

Molecular Compasses and Gyroscopes

Gyroscopic Motion in Crystals

Solid State NMR

- **X-Ray Diffraction**
- **Dielectric Spectroscopy**
- **Computer Modeling**
- **Fluorescence Anisotropy Decay**
- **Inelastic Neutron Scattering**

Dynamic NMR: VT ¹³C CP-MAS

 $\Delta \delta = 60 \text{Hz}$ $T_{\text{C}} = -16 \text{ °C}$ $k_{\text{rot}} = 267 \text{ s}^{-1}$ Ea = 12.8 kcal/mol

Two Pseudopolymorphs

Solid State Dynamics

Steve Karlen

Solid State Dynamics

²H NMR Line Shape Analysis (10⁴ - 10⁸ s⁻¹)

 $2v_Q = (3/4)(e^2q_{zz}Q/h) [(3\cos^2\beta - 1) + \eta \sin^2\beta \cos^2\gamma)$

Dynamic averaging of the orientation-dependent interaction between the ²H nuclear spin and the electric field gradient at the nuclear position.

Solid State Dynamics by ²H NMR

Experimental Calculated 3.8x10⁶Hz 385 K $2.2 \times 10^{6} \, \text{Hz}$ 367 K 1.3 x 10⁶ Hz 348 K $4.0 \times 10^{5} Hz$ 329 K 1.5x10⁴Hz 297 K -100 -50 0 50 100 -100 -50 0 50 100 KHz KHz

 $^{2}HNMR$

Two-fold flip (X-ray structure)

1.3 MHz Rotation by 75 °C !

Two-fold flip Ea = 14.6±1.5 kcal/mol

A Robust Frame for Robust Crystals

Robust and Shielding Triptycyl Frames

Cl-Benzene Removed

Godinez et al. J. Org. Chem. 2004, 69, 1652.

²H NMR Line Shape Analysis

 $A=1.45x10^{12}$; Ea = 4.3 kcal/mol

Godinez et al. unpublished

Rotational Dynamics by X-Ray Diffraction

Dunitz, J.; Maverick, E. F.; Trueblood, K. N. *Angew. Chem. Int. Ed.* **1988**, *27*, 880-895.

ORTEP: Thermal Ellipsoids (ADP)

X-Ray Diffraction vs VT-NMR

Stator Effects on Rotary Motion (ca. 0-10¹⁰ s⁻¹)

Godinez, et al., *JOC*. **2004**, *69*, 1652.

Feature article: Garcia-Garibay, M. Proc. Natl. Acad. Sci, USA, 2005, 102, 10771-10776

Godinez, et al., JACS. 2002, 124, 4701-4707.

Molecular Compasses

Photonic Materials

Reorienting Dipole Lattices

Surface Acoustic Wave Filters and Delay Lines

SAW filters

Schematic of a GMS cell phone handset (EPCOS)

More than 1 billion SAW devices are sold annually

Rotational Dynamics: Two-fold flip

Rotational Dynamics: Two-fold flip

Dielectric Measurements

(Electric Energy is Absorbed when AC Frequency Matches that of the Internal Dipole Dynamics)

Dielectric Measurements

(Electric Energy is Absorbed when AC Frequency Matches that of the Internal Dipole Dynamics)

Dielectric Measurements

Interdigitated Electrodes Patterned Photolithographically by Wet Etching

F-Rotor: Frequency-Dependent Dielectric Measurements

-Polycrystalline samples

a) Non-Polar Rotor Gives Baseline

b) Reversible on Heating and cooling cycles

c) Peak Position Depends on AC Freq.

d) Signal Intensity Increases With Temp.

R. Horansky et al. Phys. Rev. B., **2005**, 72_014302.

400

Favored State (170°)

Disfavored State (0.0°)

F-Rotor: Force-Field Estimate of Rotational Potential

Rotator Effects on Rotary Motion ?

High Symmetry Order Rotors

- -Low rotational barriers
- -High radial resolution (polarity)
- -Cogitation (gearing)

The right place, the right time....

The right place, the right time....

-Compare Rotatory Dynamics of Phenylene and Diamantene!

Bis(phenylene)diamantane Rotator system: X-Ray structure

Bis(phenylene)diamantane Rotator system: X-Ray structure

Diamantane Rotor

Log-stack packing

Diadamantane Rotor

In-and-out Chevrons

four-fold phenyl embrace **Bis(phenylene)diamantane Rotator system:** Intrinsic bis(phenylene)-diamantene rotational barrier

A Simple Insight into Rapid Diamantene Dynamics

Spin Lattice Relaxation (T1)

No Field => No Magnetization

Strong Field => Bulk Magnetization

SPIN LATTICE RELAXATION T1, is the time that it takes for M to reach its equilibrium value at Bo

-Spontaneous transitions would take thousands of years!

-T1's are dominated by STIMULATED transitions, i.e., random local fields that oscillate at the Larmor frequency (v_L) generated by the mechanical motion of nearby dipoles.

Slope = $-E_a/R$ and $+E_a/R$ Minimum = $\omega_o \tau_c$

Spin-Lattice Relaxation

Kubo and Tomita relaxation expression:

 $T_1^{-1} = C \ [\tau_c (1 + \omega^2 \tau_c^2)^{-1} + 4 \tau_c (1 + 4 \omega^2 \tau_c^2)^{-1}]$

 $\tau_c = \tau_o \exp (Ea/kT)$

- $T_1 =$ Spin Lattice Relaxation
- T_{1r} = Spin Lattice Relaxation in the Rotating Frame
- T_2 = Spin-Spin Relaxation

Fyfe, Colin A. <u>Solid State NMR For Chemists</u>, C.F.C. Press, Guelph, Ontario, Canada,**1983**.

Can we use ¹³C CPMAS VT-NMR coalescence methods to measure the rotation of the two phenylenes?

Can we use ¹³C CPMAS VT-NMR coalescence methods to measure the rotation of the two phenylenes?

Organic Synthesis to the Rescue.... —Deuterate the trityl group... Detect only the ¹H-substituted PHENYLENES

Conclusions: Internal Dynamics in Crystals can be "Engineered" with Information Contained in Molecular Structures. Artificial Molecular Machines Can't be that Far

