Structure and dynamics in weakly ordered systems studied by emission and mobility probes

Examples

Pedro F. Aramendía. Universidad de Buenos Aires

In-situ monitoring of the gelation of dip-coated films

M. Huang et al. Chem. Mater 12 (2000) 231.

Aging of TMOS gels

Gels tested by Prodan decay lifetime and anisotropy.

Figure 2. Steady-state anisotropy of PRODAN-doped TMOS sol-gels processed at pH 8 (\oplus) and pH 4 (∇) as a function of aging time.

Figure 7. Recovered microviscosity distribution for a PRODAN-doped TMOS sol-gel (pH 8) after aging for 4 (\oplus), 95 (∇), 141 (∇), 165 (\Box), 245 (**B**), and 573 h (Δ).

Polymer-gel composite material

- PMMA-silica-gel
- Prodan as probe
- Steady state and time-resolved spectroscopy

Prodan locates in PMMA and is influenced by the -OH bonds of the gel

zion anostro in difforen

Emission spectra in different solvents and in the composite

R. Gvishi et al Chem. Mater. 7 (1995) 1703.

Controlled placement of luminescent probes in mesostructured sol-gel thin films

Probing different environments with multiple probes

Probes:

• Eu(III) in the silica gel

Anionic polymer in the ionic layer (Poly-2,5methoxy,propyloxysulfona te phenylene vinylene
Ru(II)(bpy)₂(en) attached to the framework surface

Steady state, time resolved emission emission anisotropy

R. Hernandez, et al, JACS 123 (2001)1248.

SPIROPYRAN in NEMATIC LC

Diference between perpendicular and parallel absorption

Environment similar to acetonitrile (553 nm, \perp) or acetone (565 nm, //)

Biexponencial decay (// y \perp) High $E_a y \Delta S^{\neq}$.

$k^{30^{\circ}}(s^{-1})$	6,7.10 ⁻³	2,4.10-3
E _a (kJ/mol)	130	126
ΔS^{\neq} (J/K.mol)	134	113

Bossi, Aramendía, unpublished results

SPIROPYRAN in NEMATIC LC

Ea y ∆S[≠] of MC decay are linearly related in fluids.

The slope: 365 K is quite apart from the average temperature: 310 K

Bossi, Aramendía, unpublished results

Spirooxazine in nematic LC

Bossi et al JPPA In press

Relaxations in PVA

Solvatochromic plots for PRODAN and 4-AP

Barja et al J. Phys. Chem. B. In Press

Dynamic domains for the kinetics

Comparison between the characteristic times of relaxation:

- τ_{P} : of the metastable state
- τ_{M} : of the environment

Isomerization of spirooxazines in polyalkylacrylates

Testing: Decay of metastable open form

Systems

- Three polyalkylacrylates of different side chain length
- Different rigidity, decreasing: PMMA > PEMA > PiBMA
- Four naphtho- and phenanthrospirooxazines

Relaxation based decay

$$\mathbf{k} = (\mathbf{k}_0 - \mathbf{k}_\infty) . \exp(-t / \tau_m) + \mathbf{k}_\infty$$

Average activation energies; 4 probes

Polymers	РММА	РЕМА	PiBMA
Ea(k ₀)	64±2	65±4	61±2
Ea(k _∞)	72±9	78±8	78±4
Ea(1/τ _m)	62±5	60±6	56±4
E rel= Ea(k_{∞})- Ea(k_{0})	8±7	14±4	18±3

 k_0 and k_∞ : initial and relaxed decay rate constants $\tau_{m:}$ relaxation time of the medium controlling the isomerization

The softest polymer stabilizes more the extended open form

Levitus et al. J. Phys. Chem B 101(1997) 7680, 103(1999)1864, Völker et al . Helv. Chim. Acta 84(2001) 2751

Emission anisotropy of dyes embedded in polystyrene-co-2%-divinylbenzene

The probes rotate freely in a restricted volume

Wobbling in cone model

	$\tau_{f} \; (ns)$	$\langle r \rangle$	r_0	Se	θ_0^{b}
Coumarin	~-5°	0.018 ± 0.003	0.375 ^d	0.22 ± 0.02	$71^{\circ} \pm 1^{\circ}$
DTCI	0.3¢	0.033 ± 0.003	0.370 ^r	0.30 ± 0.01	$65^{\circ} \pm 1^{\circ}$
Rhodamine 101	5.28	0.044 ± 0.003	0.365	0.35 ± 0.01	$62^{\circ} \pm 1^{\circ}$

Coumarin 153

Rhodamine 101

10Å

Levitus et al. JPPA (1997)

Fig. 1. Structures of the dye molecules

Single molecule blinking of Atto dyes in PVA

Wide field CCD camera detection of hundreds of single molecules simultaneously

per nixel

Counts

Atto590

Time evolution followed by picture sequence

Gensch, Böhmer, Aramendía. J. Phys. Chem. A. (2005) In press

Single molecule blinking of Atto dyes in PVA

Time traces of selected single molecules

Frame 1 (Status)	Frame 4 (Status)	Frame 20 (Status)	Emission intensity on frame 20 (Nr of molecules)	Standard deviation ^a
ON		ON	747 (77)	500
OFF		ON	583 (50)	270
	ON	ON	750 (79)	492
	OFF	ON	570 (48)	271

Blinking molecules locate in different environments than bright ones

Gensch, Böhmer, Aramendía. J. Phys. Chem. A. (2005) In press

Microheterogeneity by single molecule emission spectra

Local orientational fluctuations of Rh6G in PMA and PnBMA

D. Vanden Bout J. Phys. Chem. B 105 (2001) 11978

Spatial heterogeneity in **PVAc thin films**

Electronic energy transfer in multichromophoric systems

Dendrimers with peryleneimide chromophores

De Schryver et al. Acc Chem. Res. 380 (2005) 514.

Electronic energy transfer in multichromophoric systems

Single molecule emission anisotropy of C1P4p immobilized in a polymer matrix

FIGURE 4. Example of (a) a transient of C1P4p where the parallel and perpendicular component where detected separately, (b) the polarization value of the trace in panel a, and (c) a histogram of the four *p* levels of the trace in panel b.

Electronic energy migration in a single molecule

Three dimensional orientation of the emission dipole of a single C1P4p molecule immobilized in a polymer matrix

FIGURE 5. Emission patterns taken from a series of consecutive defocused images recorded for a single C1P4p in a 100 nm Zeonex film. Images were recorded at 1 μ m defocusing to the glass surface. Time intervals, during which successive patterns have been observed, are listed underneath the images. The emission pattern of a single C1P4p molecule changes as function of time. The patterns provide direct evidence that different chromophores of the C1P4p emit in time as different dipole orientations.

De Schryver et al. Acc Chem. Res. 380 (2005) 514.

Acknowledgements

- Marcia Levitus
- Mariano Bossi
- Beatriz Barja
- Amanda Remorino

Collaborations J.L.Bourdelande Teresa Atvars Daniel Murgida J.B.Rodriguez Thomas Gensch

Funding: ANPCyT, CONICET, Fundacion Antorchas, DAAD, VW Stiftung

Examples to work out next time:

- ✓ HBD probes in PVA
- Eu(III) complexes in silica gels
- Spiropyrans and fulgides in LC
- Coumarins & rhodamines in crosslinked polystyrene
- Spiropyrans and spirooxazines in poly(alkylacrylates)
- ✓ Rhodamine in PVA

SS & TR Fluorescence

Electronic energy transfer

Photoisomer absorption

Fluorescence anisotropy

Photoisomer absorption

Single molecule blinking

Processes

✓ Gel aging

- Spatial and time heterogeneity in polymer films
- ✓ Free volume in polymers
- Photoinduced CD in liquid crystals

Electronic energy transfer in multichromophoric systems

De Schryver et al. Acc Chem. Res. 380 (2005) 514.

Electronic energy transfer in multichromophoric systems

Histogram of the emission risetime of 100 T2P8 molecules. Broad distribution of conformations Time resolved emission of a single molecule of T2P8 monitored at the T emission

De Schryver et al. Acc Chem. Res. 380 (2005) 514.

Excimer formation of pyrene in PDMS.

Steady state emission and fluorescence lifetime of pyrene

Figure 1. Emission spectra of 0.01 M pyrene fluorescence (a) in poly(dimethylsiloxane) (PDMS; 50 cP) (--), (b) in polystyrene (- - -), and (c) in epoxy film $(- \cdot -)$.

Excimer formation is twice faster in PDMS of 10⁴ to 10⁶ cP than in squalane (HC) of 35 cP

Free volume evidence in polymers

D.Y.Chu and J.K.Thomas. Macromolecules 230 (1990) 2217