Structure and dynamics in weakly ordered systems studied by emission and mobility probes

Weakly ordered systems

Emission probes

Mobility probes

Pedro F. Aramendía. Universidad de Buenos Aires

Weakly ordered systems

Polymers in films or in solution Composite materials Gels Liquid crystals Microemulsions

Relevant questions:

Microdomains: which is their structure? (main features) Which is the characteristic time for their change?

Microheterogeneity \leftrightarrow relaxation dynamics Spatial and time domains.

Polymers and composites

Polymer-gel composite material

Semicrystalline Polyethylene

OH- pockets in Poly(vinyl alcohol)

Inorganic or hybrid sol-gel

JACS 123 (2001)1248.

Nematic Uniaxial n Order parameter: $S = 1/2 \left\langle 3\cos^2\theta - 1 \right\rangle$ $S \approx (1 - p[T/T_C])^q$

Liquid Crystals

Twisted nematic

Emission probes

Fluorescence. Characteristics.

Spectrum and Stokes shift

Red edge effect

Polarization

Electronic energy transfer

Quenching

Single molecule fluorescence

Internal rotors Photoisomerization

Excimers Emission anisotropy

Di-pyrenyl propane

Fluorescence

Spectrum and Stokes shift Solvatochromic scales: what do they measure?

Solvatochromic scales: what do they measure?

Polarity

Fluorescence

Fluorescence lifetime and time-resolved emission spectroscopy

Emission decay

Dynamic domains for the kinetics

Comparison between the characteristic times of relaxation:

- τ_{P} : of the metastable state
- τ_{M} : of the environment

Fluorescence

Fluorescence lifetime and time-resolved emission spectroscopy

TRES: time-resolved emission spectra

Relaxation Excited state reaction excimer proton exchange energy transfer

Decay registered at various emission wavelengths

Build emission spectra at different times

Emission probes

Relative size

E. Jares-Erijman, T. Jovin. Nature Struct. Biology. 2004

Red Edge Excitation Shift (REES)

Ground and excited-state potential curves for different sites a, b, c and d differing in the orientation of surrounding molecules, θ , but having the same intermolecular separation R. Site a represents the most stable conformation with the largest interaction energy while site d represents the least favorable situation.

Red edge excitation shift (REES)

Figure 7.36. Fluorescence emission spectra of 1,8-ANS in 1-propanol at 77 K for various excitation wavelengths. The excitation and the emission bandpass are both 5 nm. Revised from Ref. 74.

Figure 7.37. Temperature dependence of fluorescence excitation red shift for 1,8-ANS in 1-propanol. Revised from Ref. 74.

Fig. 2.3. Examples of molecules with their absorption transition moments.

$$\begin{split} & \mathbf{I}_{abs} \; \alpha \; \mathbf{E}_{exc}{}^2 \; \mu_{abs}{}^2 \; \cos^2\!\theta_{abs} \\ & \mathbf{I}_{em} \; \alpha \; \mathbf{I}_{abs} \; \phi_f \; \cos^2\!\theta_{em} \end{split}$$

If the molecule rotates during the excited state lifetime, the polarization of the emission changes.

Thus, emission anisotropy measures the molecular rotation during the excited state time window

Photoselection

After: preferential orientation in the polarization direction

Before: random orientation

Polarization of the absorbed light

Rotational diffusion

 ϕ_r : Rotational correlation time

Fluorescence anisotropy

$$r = \frac{I_{\parallel} - I_{\perp}}{I_{\parallel} + 2I_{\perp}}$$

Depends on viscosity (η) , temperature, specific interactions with the environment (C), shape and volume of fluorophore (V_h) .

$$\phi_r = \frac{C.\eta.V_h}{kT}$$

Fluorescence: Energy transfer

Förster type:

• Electrical interaction between the donor (D) emission transition dipole and the acceptor (A) absorption transition dipole (Resonance effect).

Distance and orientation dependent

$$k_{ET}(r) = \frac{1}{\tau_D^0} \cdot \left(\frac{R_0}{R}\right)^6$$

$$\Phi_{\rm ET} = \frac{k_{\rm ET}}{1/\tau_{\rm D}^{0} + k_{\rm ET}} = \frac{1}{1 + \left(\frac{R}{R_{0}}\right)^{6}}$$

k_{ET}:energy transfer rate constant

 $\begin{array}{l} R_0: \mbox{ Förster distance} \\ \tau_D^0 \ : \mbox{ Fluorescence lifetime of} \\ \mbox{ the energy donor} \end{array}$

Spectral overlap integral

$$R_0^{6} = \phi_D . \kappa^2 . \left(\frac{9000.\ln 10}{128\pi^5 N_A n^4}\right) . J(\lambda)$$
$$J(\lambda) = \int_0^\infty F_D(\lambda) . \varepsilon_A(\lambda) . \lambda^4 . d\lambda$$

J(λ): spectral overlap F_D (λ): Donor emission ε_A (λ): Acceptor absorption

Figure 13.8. Overlap integral (shaded area) for energy transfer from a tryptophan donor to a dansyl acceptor on melittin. $R_0 = 23.6$ Å. Data from Ref. 24.

Förster energy transfer

Distance dependence

Orientation dependence

Useful range 1 - 10 nm

Förster energy transfer Donor emission decay

The decay is heterogeneous and depends on the acceptor distribution

$$I_{fD}(t) = I_{fD}(0) . \exp\left[-t/\tau_{D}^{o} - 2\gamma . (t/\tau_{D}^{o})^{1/2}\right]$$
$$\gamma = \frac{\sqrt{\pi}}{2} . [A] . \frac{4}{3} \pi R_{0}^{3}$$

Random distribution

Förster energy transfer

Figure 14.1. Distribution of donor-acceptor distances for a native a denatured protein. The probability functions P(r) are peak normality functions P(r) are peak normality functions P(r) and P(r) and P(r) and P(r) are peak normality functions P(r) and P(r) are peak normality functions P(r) and P(r) are peak normality functions P(r) and P(r) and P(r) and P(r) are peak normality functions P(r) and P(r) and P(r) and P(r) are peak normality functions P(r) and P(r) and P(r) and P(r) and P(r) and P(r) are peak normality functions P(r) and P(r) and P(r) and P(r) are peak normality functions P(r) and P(r) and

Distance distribution

 $\mathbf{1}$

Figure 14.2. Simulated data illustrating the effect of D-A distance distributions of different half-widths (hw) (*right*) on the TD intensity decay of the donor (*left*): ______, Donor intensity decay in the presence of acceptor; - -, single-exponential fits to the donor intensity decay in the presence (D-A) and absence (D) of acceptor.

Single molecule fluorescence

R. Keller et al. Chem. Rev. 99 (1999) 2929

Distinctive features

- Individual behavior
- Distribution of values instead of average in bulk measurements
- Spatial resolution (scanning microscopy)
- Single molecule photochemistry:
 - Blinking
 - One sptep photobleaching

Single molecule fluorescence

Single molecule fluorescence

Single Molecule Multiparameter Fluorescence Spectroscopy

✓Two time bases

✓ Two channels: donor and acceptor

✓ Two polarization directions in each channel

Simultaneous
 measure of I_{fD}; I_{fA}; τ; r

C. Seidel et al. Single Molec 2 (2001): 251 PNAS 100 (2003) 1655

Mobility probesPhotoisomerizationa) $E \leftrightarrow Z$

E/Z ratio at the photostationary state

Structure	Compound	Group	τ (s)	Bands
Х = У = Н	Azobenzene	Azobenzene	> 10 ³	(n-π*)<(π -π*)
X = N(CH ₃) ₂ Y = H	4-(Dimethylamino)- azobenzene	Aminoazobenzene	~10	(n- π *)~(π -π *)
X = N(CH ₃) ₂ Y = NO ₂	4-(Dimethylamino)-4'- nitroazobenzene	Pseudostilbene <i>"push-pull"</i>	~10 ⁻³	(n-π*)>(π -π*)

Photoisomerizationb) Cyclization ↔ ring opening

Spirooxazines

Furylfulgides

Internal rotations

Internal rotation competes with emission

Temperature dependent (viscosity) or free volume dependent emission intensity

R. O. Loutfy. Photophysical and photochemical tools in polymer science. 1986. Reidel Publ. Co.

Emission decay dynamics and spectroscopy Excimer formation

Figure 5. Open and closed forms of 1,12(bispyrenyl)dodecane and the corresponding emission profiles of (A) the extended form (monomer emission) and (B) the compact form (excimer emission) (adapted from ref 14).

Dunn & Zink. Chem. Mater. 9 (1997) 2280. Narang, U.; Bright, F. V. Chem. Mater. 1996, 8, 1410

Free volume evidences in polymers and in gels

Excimer formation of pyrene in PDMS.

D.Y.Chu & J.K.Thomas. Macromolecules 230 (1990) 2217

Figure 1. Emission spectra of 0.01 M pyrene fluorescence (a) in poly(dimethylsiloxane) (PDMS; 50 cP) (--), (b) in polystyrene (---), and (c) in epoxy film $(-\cdot -)$.

$$M^{*} + M \xrightarrow{k_{1} [M]} (M^{*} M)$$

$$k_{1m} \qquad k_{1m} \qquad k_$$

Excimer formation is twice faster in PDMS of 10⁴ to 10⁶ cP than in squalane (HC) of 35 cP

Free volume evidences in polymers and in gels Emission anisotropy

Figure 9. Steady-state anisotropy, $\langle r \rangle$, of Ox1 in gel A (\bullet) and the gel bulk viscosity (O) as a function of time at 65 °C.

Marchi et al. Langmuir. 13 (1997) 3665

Gels tested by PRODAN decay lifetime and anisotropy.

Aging of gels and polymers

Figure 2. Steady-state anisotropy of PRODAN-doped TMOS sol-gels processed at pH 8 (\oplus) and pH 4 (∇) as a function of aging time.

Microviscosity (centipolse)

Figure 7. Recovered microviscosity distribution for a PRODAN-doped TMOS sol-gel (pH 8) after aging for 4 (\oplus), 95 (∇), 141 (Ψ), 165 (\Box), 245 (**B**), and 573 h (Δ).

U. Narang et al. J. Phys. Chem. 98 (1994) 8101.

probe	uses	refs
7-azaindole (7AI)	polarity, homogeneity, and surface silanol content	23a, 23b,33, 55
1-bromo-4-(bromo- acetyl)naphthalene	surfactant mobility	74
dansyl	polarity, viscosity	48, 51
v	protein accessibility	86
2,6-diamidino-2-phenylin- dole (DAPI)	accessibility of cells	75
1,1',3,3,3',3'-hexamethyl- indotricarbocyanine iodide (HITC)	solvent rigidity	61
oxazine-1	polarity, viscosity	62
fluorescein	pH, polarity, leaching	79
	protein accessibility	87
fluorescein-dextran	pH, mobility	59
ketocyanine dye	polarity	35
prodan	polarity, homogeneity	22, 33, 55 22, 49, 74
pyranine	pH, alcohol/water ratio	23b, 41, 72, 73
pyrene	polarity surfactant concentration accessibility	75 32, 34, 47, 53, 63 63, 71, 73, 74 47, 53
	molecular imprinting	11
pyrene-labeled	entrapped inposome	18
liposomes	behavior	50
1,12-bis(1-pyrenyl)	mobility	50
dodecane		co co 70
pyrene-coumarin 153	regions of glass	60, 69, 70
2-p-toluidinyl naphtha- lene-6-sulfonate (2,6- TNS)	mobility in thin films	71
Ru(bpy) ₂ ²⁺ -methyl viologen	mobility in polar regions of glass mobility of entrapped	69, 70
	solvent	
rhodamine 6G		32, 53
ruthenium complexes	accessibility to O ₂	44
1	development of matrix	76
CIRe(CO)3-2-2'-	solvent motions	25
Eu(III)	molecular templating	76

Table 2. Fluorescent Probes Utilized in the Study of Sol-Gel-Derived Nanocomposites

Review on fluorescent probes for nanocomposite materials.

Two classes of materials are analyzed:

Class I: Sol-gels with dispersed organic additives.

Class II. Sol-gels with attached organic functionalities.

Keeling-Tucker & Brennan. Chem. Mater. 13 (2001) 3331

Examples to work out next time:

- ✓ HBD probes in PVA
- Eu(III) complexes in silica gels
- Spiropyrans and fulgides in LC
- Coumarins & rhodamines in crosslinked polystyrene
- Spiropyrans and spirooxazines in poly(alkylacrylates)
- ✓ Rhodamine in PVA

SS & TR Fluorescence

Electronic energy transfer

Photoisomer absorption

Fluorescence anisotropy

Photoisomer absorption

Single molecule blinking

Processes

- ✓ Gelation & gel ageing
- Spatial and time heterogeneity in polymer films
- ✓ Free volume in polymers
- Photoinduced CD in liquid crystals