A Multiscale Approach to Developing and Predicting the Behavior of High Performance Materials for Advanced Nuclear Energy Systems

G. R. Odette¹, M. J. Alinger^{1,a}, B.D. Wirth² and M. K. Miller³

^{TO TIO Cr Fe 1} Materials Department, University of California Santa Barbara ²Nuclear Engineering Department, University of California Berkeley

³ Materials Science Division, ORNL

a. Currently at GE Corporate Research

ICMR Summer Program on Advanced Thermostructural Materials UCSB, 15 August 2006

Characterization Techniques Are Key

Small Angle Neutron Scattering (SANS)

SANS is the result of coherent elastic diffraction at small angles around a beam of thermal or cold neutrons by features (precipitates, solute clusters, defects) with different scattering length (nuclear and magnetic) densities (ρ) than the matrix they are embedded i

 $\rho_{p/m} = \Sigma_{ip/m} [N_{at}/V] X_i b_i$

Here b_i = scattering length for isotopes in the matrix (m) and feature (p)

The measurable size (r) range of the features is bigger than atoms and smaller than ... (1-100 nm)

 $d\Sigma/dq = V^{-1}\Sigma_{i,j}b_ib_jexp[iq(r_i-r_j)]$

Small Angle Neutron Scattering (SANS)

SANS is quantified as a cross section - $d\Sigma/d\Omega(q)$ - that varies with the scattering vector (q) - for a neutron with wavelength λ at scattering at angle 2θ -

$q = 4\pi sin(\theta)/\lambda$

In the case of dilute (non-interacting) features $d\Sigma/d\Omega(q)$ depends the size (r_p), volume fraction (f_p) and volume (V_p) of the feature and it's ρ contrast with the matrix $\Delta \rho = (\rho_p - \rho_m)$

$d\Sigma/d\Omega(q) = f_p V_p \Delta \rho^2 [F_p(qr)]^2$

Here F(q) is a shape-dependent form factor that depends on r - i.e. for a sphere

 $F_p(q) = \{3[sin(qr_p) - qr_pcos(qr_p)]/[qr_p]^3\}$

Shapes Scattering Curves

Single type/size feature - the normalized $d\Sigma/d\Omega(q)/d\Sigma/d\Omega(0) = d\Sigma/d\Omega(q)_n$ determined by $r_p \rightarrow plot \log[d\Sigma/d\Omega(q)_n]$ vs. q^2 For $qr_p < \approx 3$ Guinier approximation -> $d\Sigma/d\Omega(q)_n \approx exp[-(qr_g)^2/3]$ Can fit $d\Sigma/d\Omega(q)_n$ data to find $r_p \rightarrow$

$$\ln[d\Sigma/d\Omega(q)_{n}] = -[r_{g}^{2}/3]q^{2} \rightarrow r_{p} = \sqrt{(5/3)}r_{g}$$

Small nm-scale features scatter at higher q and are thus are 'easily' detected in many materials

Details, Absolute Fits and Complications

Reduce raw count data from a 2D position sensitive detector to establish a measured feature $I_p(q)$ (usually using a control) - absolute $d\Sigma/d\Omega(q)_p$ based on a calibration standard

Particle size distributions smears out $d\Sigma/d\Omega(q)_p$ curves -> fit distribution functions like *ln normal* - note distributions (narrow?) of λ and resolution limits also smear out $d\Sigma/d\Omega(q)$

Fit absolute $d\Sigma/d\Omega(q)_p$ to establish feature number densities

 (N_p) - volume fractions (f_p) size distributions (<r_p>, β)

Need to know $\Delta \rho = (\rho_p - \rho_m)$

Multiple features add complications

Exploit magnetic and nuclear scattering $> d\Sigma/d\Omega(q)_{pm}$ and $d\Sigma/d\Omega(q)_{pn}$

Experimental Configuration (NIST)

- NIST CNR NG1 and NG7
- Measure nuclear & magnetic scattering in 1.8T B-field
- Corrected sample scattering minus control with H₂O standard

Nuclear and Magnetic Scattering

Example - J12YWT

NFA Processing Steps

What Happens to Y_2O_3 during MA?

- SANS and other measurements on powders shows mechanical alloying dissolves most of the Y_2O_3 control and milled samples scattering are \approx same.
- NCs with r = 1 to 2 nm features form during high temperature consolidation

What Controls the NCs r, N and f?

- The NCs r increase while number density (N) and volume fraction (f) decrease with increasing HIPing temperature
- HIP consolidation and direct powder annealing for same t-T history produce very similar NCs

Necessary Ingredients for NCs?

• Y, Ti and high energy (SPEX versus attritor) milling produce a larger f for HIPing at 850°C and both seem necessary at 1150°C

Model Versus INCO and Kobe Alloys

• UCSB model alloys and J12WYT and MA957 contain similar NCs

NC Precipitation Kinetics

Are NCs Thermally Stable? MA957 Anneal 120°C

Temperature	Time (hours)							
(°C)	1/3	1	3	9	27	81	243	480
1150			X	X	X	X	X	X
1175			X		X		X	Χ
1200			X	X	X	X	X	Χ
1225	Χ		X		X		X	
1250	Χ	Χ	X	X	X	X	X	
1300			X	X	X			
1350			X	X	X			
1400			X	X				

r (nm), f (%), N (10^{23} /m³), M/N

 Control -O-As-Received

-9 Hours

Pipe Diffusion Coarsening Model

• Dislocation pipe diffusion ($r^5 \alpha t$)

 $r(t_a, T_a) - r_o \approx r_o [2.4 \times 10^{27} \exp(-880000/RT) - 1]^{1/5}$

• NC transform to nearer-equilibrium oxide phases at $r \approx 3.5$ nm

Atom Probe Tomography

- Roots in Field Ion Microscope (FIM) 1950-60s
- Atom Probe Field Ion Microscope (APFIM) and Imaging Atom Probe (IAP) 1970-80s
- Three-dimensional Atom Probe (3DAP) 1986
- Local Electrode Atom Probe (LEAP) 1994
 - local electrode on XYZ nanopositioning stage
 - three-dimensional element atom maps ...
 - commercial introduction 2003
 - laser pulsing 2006
- Layer-by-layer atom evaporation in high specimen tip field by voltage pulses (≈1/50) -> back track trajectories to measure atom position with a 2D detector
- Reconstruct 3D nanostructures

State-of-the-Art Local Electrode Atom Probe

 γ'/γ'' precipitates in Alloy 718

11.4 M atoms in ~1 h

Improved detector and stage design, high speed pulse generators and digital timing systems -> shorter experiments (days to minutes - 300x) significantly more atoms (to >100 million atoms) larger fields of view (40x improvement)

Local Electrode Atom Probe

The mass-to-charge ratio is derived from the flight time, t, and applied voltages, V_{dc} and V_{pulse}

$$\frac{m}{n} = c \left(V_{dc} + \alpha V_{pulse} \right) \frac{t^2}{d^2}$$

x - **y** coordinates from detector impact position

z coordinate determined from position in the evaporation sequence

Potential Energy \rightarrow Kinetic Energy $neE = \frac{1}{2}mv^2$ Data are reconstructed into 3D volumes

Typical cylinder volume \approx 50-100 nm diameter x100-500 nm long

CMSX-4 Superalloy

CMSX-4 nickel based superalloy - a precipitate free zone for the the spherical secondary γ' precipitates in the γ channels between the cuboidal primary γ' precipitates

Ultrafine Precipitates in Irradiated Steel

Nanoscale Solute Distribution

Ni, Mn and Si extents are larger than that of Cu. Matrix: 0.09at.% Cu, 1.34% Ni, 0.96% Mn, 0.1% Mo, 0.013% P, 0.008% C

Dislocation in an Irradiated RPV Weld

13.7M atoms

The dislocation exhibits both P and C segregation and a high number of Cu-, Ni-, Mn- and Si-enriched precipitates

Courtesy E. Pereloma, Monash University Fe 0.039 wt% C, 0.5% Cr, 0.32%Mn, 0.04% P

 $Y_2Ti_2O_7$ and $Y_2TiO_5 \rightarrow$ **Y+Ti/O: 4/7 and 3/5 Y/T: 1/1 and 2/1**

APT -> **Y+Ti/O: 3/2 to 1/1 and Y/Ti: < 2/3**