Materials Challenges in Advanced Nuclear Energy Systems: the Promise of Advanced High Performance Alloys

G. Robert Odette¹ and Brian D. Wirth²

¹Materials and Mechanical Engineering Department University of California, Santa Barbara

> ²Nuclear Engineering Department University of California, Berkeley

Presented at ICMR Summer Program on Advanced Thermostructural Materials UCSB, 9 August 2006

Outline

- Developing materials for nuclear fission and fusion presents many enormous materials challenges
 - severe thermomechanical/fatigue loading
 - aggressive chemical environments
 - inherent dimensional instabilities and stress redistributions
 - severe transients and large safely margins
 - in-service property degradation of many performance sustaining properties that depend on

the

synergistic combination of many variables

- Overview of radiation damage and effects
- Introduction to the promise of a new high performance radiation tolerant alloy system nanostructured ferritic alloys more next week

Neutrons

Fast neutrons > ≈ 0.1 MeV major source of *displacement damage* Fast neutrons > 1 MeV are the major source of *He and H transmutants* Average fast fission neutron E ≈ 1 MeV Average fast fusion neutron E ≈ 14 (20%) + 2 (80%) MeV

Neutron-nuclear interactions ->primary recoiling atoms (PRA)

L. Greenwood

Neutron Processes

Neutron Damage Dose Units

Damage Dose displacements per atom (dpa) = $\phi t \sigma_{dpa}$ fluence - $\phi t = (\phi - flux) x (t - time)$ σ_{dpa} = displacement cross section

Primary Displacement Defects vacancies = self-interstitial atoms (SIA) vacancy and SIA clusters

Also He, H and solid transmutants (appm)

Defects and Small Defect Clusters

<110> Split-Interstitial (SIA) Vacancy 6) 10 SIA cluster 12 Vacancy cluster

Molecular Dynamics Simulation of a Cascade

50 keV cascade in Fe

Molecular Dynamics Simulation of Cascade

Cascade Aging Phenomena

Vacancy-SIA recombination (self-healing)

Additional SIA clustering and escape of mobile SIA and SIA clusters from cascade region-long range migration - < 1 ms

Vacancy-solute -> nanovoid cluster complexes - < 1 ms to s

Vacancy cluster coarsening and ultimate dissolution escape from cascade region-long range migration - s to gs

Residual solute clusters and trapped SIA cluster dislocation loops

Aging of Cascade Vacancy Core in Fe

Aging of Cascade Vacancy Core in Fe-0.3%Cu

Example - Other Interactions An 11 SIA cluster and a 4 He, 6 vacancy cluster at 1000 K

Long Range Defect Migration and Reactions

- Primary damage -> long range diffusion -> enormous SIA and vacancy supersaturation
- Additional vacancy-SIA recombination
- Annihilation at sinks (dislocations-grain boundaries-...)
- Sink bias driven clustering of vacancies (cavity growth by excess vacancy flux) and SIA (dislocation loops) as well as dislocation climb (by excess SIA flux)

growing SIA loop

growing void

Microstructural Evolutions

J. Stiegler

Microchemical Evolutions

Significant microchemical changes accompany complex microstructural evolutions in multiconstituent-multiphase alloys - thermodmynics may be enhanced or induced (driven)

Vacancy/SIA supersaturations -> radiation enhanced diffusion (RED)

Coupled persistent solute defect fluxes to sinks -> radiation induced segregation (RIS) -> may drive alloys further from equilibrium

Ballistic mixing and amorphization

Accelerate low temperature precipitation Grain boundary segregationsensitization Non-equilibrium precipitates Destabilization of Fe-Cr-Ni austenite Kinetically modified phase boundaries

Radiation Enhanced Diffusion (RED)

KLMC Simulation of Cu Precipitation

Kinetic lattice Monte Carlo simulation of diffusion and precipitation in Fe at 300°C for 0.3 at.%Cu

Radiation Induced Segregation (RIS)

Segregation driven by the inverse Kirkendall effect and SIA solute complex transport

Transmutations

At high doses transmutation reactions change elemental compositions but He and H gas are generally more significant

L. Greenwood

 $n + {}^{54}Fe \rightarrow {}^{51}Cr + \alpha$ (He) and $n + {}^{54}Fe \rightarrow {}^{54}Mn + p$ (H)

'Most' interstitial H diffuses out at high temperature

He is highly insoluble undergoing RED to precipitate as gas bubbles in the matrix as well as on both dislocations and various interfaces

He/dpa - <1 fission ≈10 fusion >50 spallation protons

He bubbles are excellent nucleation sites for stress and radiation driven growing cavities

Void Swelling and He Embrittlement

Helium bubbles become unstably growing voids and creep cavities without a nucleation barrier when - bubble

Instability at a critical bubble radius - r_b^* and critical bubble He content - n_{He}^* - functions of variables shown above Helium accumulation in bubbles -> rapid void swelling and/or severe reductions in creep rupture life-ductilitysubcritical creep-fatigue crack growth rates

Void Swelling and Helium Embrittlement

Other Irradiation Effects

Approximately athermal irradiation creep

 $\epsilon \approx 10^{-5} \sigma dpa \rightarrow 10\% @ 100 MPa-100 dpa$

Irradiation hardening at $< \approx T_m/4 \rightarrow loss$ of uniform strain ductility and flow localization-channeling

Hardening induced fast fracture embrittlement -> transition temperature shifts and reductions in tearing toughness

RED/RIS segregation and helium weakening of grain boundaries -> IGF

Non hardening fast fracture embrittlement by precipitation of brittle phases and microstructural instabilities

Nano-Precipitates in Irradiated RPV Steels

Cu Ni Mn

APT

Design Strategy for Damage Resistant Alloys

Operate at high temperatures above displacement damage regime - other issues of creep strength-corrosion-...

High sink and trap densities to recombine (self-heal) vacancies and SIA

Protect grain boundaries and manage helium by trapping in fine nm-scale high pressure bubbles

Solution - nanostructured materials

Thermal and irradiation stability of far from equilibrium structures paramount

Kinetically constrain thermodynamically driven evolutions

