Supermolecular Stereochemistry in Liquid Crystals

David M. Walba and Noel A. Clark

Department of Chemistry and Biochemistry, Department of Physics, and the Liquid Crystal Materials Research Center University of Colorado at Boulder

> High throughput measurement of ee using FLC EO

 Banana phases and the first fluid conglomerates

Stereochemical Aspects of Novel Materials UCSB, August 2005

A Liquid Crystal Conglomerate?

- No chiral LC phase from achiral or racemic molecules was known.
- Observation of a chiral LC phase is often used as proof of molecular enantiomeric excess.

Banana Phases

- 1929 Vorländer describes the first banana LCs
- 1992 Cladis, Brand and Pleiner suggest possibility of polar Sm "chevron" bilayer with C_{2v} symmetry and helical chirality
- 1994 Matsunaga reports certain achiral bent mesogens give smectic C phases.
- 1996 Takezoe and Watanabe et al report these "banana-shaped" molecules produce ferroelectric phases with C_{2v} layer structure and helical chirality, starting a wave of banana mania in the FLC community
- 1997 The Boulder Group proposes a chiral layer structure for the B2 phases

NonylOxyBOW (NOBOW): $B4 - 155 \rightarrow B2 - 173 \rightarrow I$

B2 Layer Structure

Spontaneous Nonpolar AND Reflection Symmetry Breaking

The arrows are all pointing in the same direction, and the director is tilted, giving a C_2 layer structure. This symmetry is both polar and chiral.

Nonsuperposable Mirror Images

Ferro and Antiferroelectric Chiral Smectics

The B2 Conglomerate is Antiferroelectric

Configuration

A Ferroelectric Banana?

- Most calamitic chiral smectics are ferroelectric (antiferroelectrics are very rare)
- Most bananas are antiferroelectric
- Glaser theory: Syn-clinicity is favored entropically due to out-of-layer fluctuations
- Suppression of OLFs by the molecular structure allows anticlinic layer interfaces to appear in the phase sequence.
- By far the best way to achieve this: The famous MHOC tail
- The SmC_A anticlinic phase occurs in both unichiral and racemic MHPOBC

X 84 C_A^* 118 C_{γ^*} 119 C^* 121 C_{α^*} 122 A 148 I

MHOBOW: A SmC_SP_F by Control of Clinicity

The Amazing KYOBOW from Tokyo Tech!

KYOBOW is Unichiral, but forms a SmC_AP_F Ferroelectric Racemate!

Polar Plane

- Minority domains are a conglomerate showing the chiral EO of a SmC_SP_F phase.
- Majority domains show no EO switching, but a strong ferroelectric polarization reversal current.
- Focal conic domains are immiscible with the NOBOW SmC_sP_A phase in the absence of a field, but become miscible upon application of a field, where both materials are in the SmC_AP_F structure.

The SmCP Story was an FLC Paradigm Shift

Tilt Plane = Normal to C_2 Polar Plane = Contains C_2 and z

FLC Paradigm Shifting Runs Amuck

Claims of parity violation

- Goodby 2005 Chem. Commun. (unichiral FLC from a racemate)
- Goodby 2001 J. Mater. Chem. (unichiral FLC from achiral mesogen)

Claims of spontaneous reflection symmetry breaking

- Kishikawa 2005 JACS (achiral calamitic phenylbenzoate makes a chiral SmC phase!)
- Niori 2004 MCLC (chiral nematic from an achiral bent-core mesogen)
- Takezoe and Watanabe 2002 JACS (doping an achiral bent-core mesogen into a chiral nematic tightens the pitch)
- Takezoe 1999 Angew. Chem. IE (spontaneous de-racemization of enantiomers in a SmC)
- Komitov 1998 Liq. Cryst. (chiral nematic from achiral mesogen)

The conformational chirality hypothesis in LCs

Mauguin's Twisted Nematic

Mauguin's Twisted Nematic Liquid Crystal, 1911

Unichiral SSFLC Electro-optics

P > 0 (right-handed)

Enantiomeric EO Response

Weird Observation from the '90s

Parity violation? We think NOT.

SSFLC switching is one of the most sensitive detectors of chirality...

...and the Volume of Material in the Pixels is Small

Pixel volume as small as $25 \mu m^3 = 25 Fl \sim 25 pg$

... Suggests Possible New Applications

Search for enantioenrichment on Titan

- Requires fast, high sensitivity method for sensing ee remotely
- Chirality detectors for combinatorial asymmetric catalyst development
 - Key to development of asymmetric catalysts using combinatorial methods
 - Requires high throughput and good discrimination in the 50% -100% ee range
 - Conventional method: 15,000 analyses in several months by HPLC
 - Current published state of the art: 15,000 analyses in 48 hrs using reaction microarrays

The Harvard chirality detector M. Shair et al. J. Am. Chem. Soc., 123, 361 (2001)

First Approach to FLC Chirality Detector

- Pick an achiral or racemic SmC host (e.g. racemic W314)
- Dope with sample of unknown ee
- Determine ee using SSFLC electro-optics
- Adapt the method for use in a large array of physically separated pixels

$$\tau = \frac{\eta}{P * E} \quad P = f(ee)$$

Behavior of the Authentically Racemic Host is Surprising

- The EO response of authentic rac-W314 is complex
- After a few hours under drive, chiral domains can be observed
- After a month under drive, the entire sample segregates into two heterochiral domains

18

PE Can Drive Partial Deracemization (~4% ee)

For Chirality Detector SmC is Problematical G2 Approach: Electroclinic Chirality Detection

- E-field induced deracemization is cool, but chirally doped racemic W314 is not useful for measurement of ee in our hands
- Preliminary work using achiral SmC hosts uncovered several other interesting complexities (i.e. it doesn't work)
- Can the electroclinic effect in doped achiral SmA hosts produce a useful chiral signal?

The Electroclinic Effect in the SmA*

Effectively an E-field induced SmC with collective polarization*

Only happens with chiral liquid crystal

- Bob Meyer also predicted the electroclinic effect in SmA* materials
- At E = 0 there is no net tilt in a SmA*
- Due to free energy gain from combining an applied E field with the collective polarization in tilted chiral smectics, a tilt is induced in the SmA* with applied E
- $\theta \propto E$ for small E

Doping a SmA Host (EK992)

Host: EK992

- $\begin{array}{l} 80\% \ R_1 = C_8 H_{17}; \ R_2 = OC_6 H_{13} \\ 5\% \ \ R_1 = C_8 H_{17}; \ R_2 = OC_{12} H_{25} \\ 15\% \ \ R_1 = C_{10} H_{21}; \ R_2 = OC_6 H_{13} \end{array}$
- SmC 43 SmA 59 N 65 I

Dopant: Naproxen

Various ee, enriched in (S)

The chiral signal

 Electroclinic electro-optic modulation depth ∆I between crossed polarizers (I_{E on} - I_{E off} with the cell oriented for maximum ∆I)

• Conditions of the measurements

- Sample: Host doped with 1% by weight naproxen samples of various ee
- EO cell: 3.7 μm gap ITO/glass with parallel-rubbed low pretilt PI alignment layers
- EO measurement: $V_{App} = \pm 10V$ square-wave drive @ 1KHz, HeNe laser probe (spot size 20 x 20 μ m), I measured with a photodetector (V)

A deVries Cell

Data Obtained with EK992 Host

The good news: The chiral signal provides a good measure of naproxen ee.

The bad news: T_{AC} is different for each sample. Since the electroclinic effect is strongly dependent upon reduced temperature, the data had to be taken at a constant reduced temperature, which was a different absolute temperature for each sample.

This method cannot be applied to a high throughput measurement device.

deVries Smectics to the Rescue

- For "normal" SmA* materials the electroclinic tilt is small, and highly dependent on T-T_{AC}
- deVries SmA* materials (very rare) in general seem to show a much larger tilt, and much less temperature dependence than normal SmA* materials

Host W435 (a deVries material)

Conditions used for the measurements

- Host doped with 1% by weight of several naproxen samples of various ee
- Sample filled into an ITO/glass LC cell with one rubbed and one unrubbed nylon (elvamide) alignment layers
- − △I measured as before

This method can be amazingly sensitive (W415 of ~ 0.01 % ee detectable)

Method works at a single temperature

- Chiral signal from 1% Naproxen in achiral deVries SmA host
- Measurement good to about ± 5% ee
- Signal from about 10 pgm of Naproxen
- Adaptable to really high throughput measurement of ee

Results with Pseudoephedrine

- 1% by weight pseudoephedrine in W435 gives a smaller signal than naproxen
- Consistent data was difficult to obtain, due to the volatility AND insolubility of the pseudoephedrin in W435

Conclusions

- The achiral deVries host gives a huge signal compared to the nondeVries host
- The signal is linear with ee of the dopant
- Though the T-T_{AC} was different for the mixtures, in the deVries host the signal was relatively temperature independent, allowing for measurement of the ee of multiple samples at one absolute temperature
- It is necessary to "scan around" the cell to find a well-aligned region
- This method could in principle be applied to a large number of samples in parallel (in physically separated "pixels") if uniform alignment could be obtained
- The actual amount of naproxen in the probe beam is ~ 10 pgm (10⁻¹¹ gm)
- This method could be applied to ~ 0.25 pg (5 x 5 µm pixels)
- Optimization of the host is possible

ee

What Now?

Measure ee of the product of some asymmetric reactions

- Homogeneous mixture?
- Interference from catalyst?
- Develop a parallel method measurement "pixels" in an array
 - ee microdisplay has physically separated pixels, uniform electronics (should be much less expensive than video microdisplays)
 - Very relaxed lifetime specification suggests high yield manufacturability...
 - Is it possible to get the required "clean molecular alignment"?

 Key issue - low conversion is indistinguishable from low enantioselectivity

Banana Mania

<u>Design, Synthesis, PLM</u> Dave Walba, Eva Körblova

PLM , X-ray, DRLM, FFTEM, SimulationsNoel ClarkJoe MaclennanDave ColemanA ChatthamMichi NakataRenfan Shao

Matt Glaser Darren Link John Fernsler

\$\$ The Liquid Crystal Materials Research Center (NSF MRSEC)

Chirality Detector

Noel A. Clark

Eva Körblova Lior Eshdat Renfan Shao Jan Lagerwall Alex Kane

supermolecular ordering LC bioscience & technology lyotropics, colloids, & composites self-assembly and new phases

ILCC 2006 www.ilcc2006.com

rontiers of chirality optics & photonics LC nanoscience exotic soft materials