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 No chiral LC phase from achiral or racemic molecules was known.
 Observation of a chiral LC phase is often used as proof of molecular

enantiomeric excess.

A Liquid Crystal Conglomerate?

Sodium Ammonium Racemate
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 1929  Vorländer describes the first
banana LCs

 1992  Cladis, Brand and Pleiner suggest
possibility of polar Sm “chevron” bilayer
with C2v symmetry and helical chirality

 1994 Matsunaga reports certain achiral
bent mesogens give smectic C phases.

 1996 Takezoe and Watanabe et al report
these "banana-shaped" molecules
produce ferroelectric phases with C2v
layer structure and helical chirality,
starting a wave of banana mania in the
FLC community

 1997 The Boulder Group proposes a
chiral layer structure for the B2 phases

(NOBOW):  B4 — 155 “ B2 — 173 “ INonylOxyBOW

Banana Phases



Nonsuperposable Mirror Images
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The arrows are all pointing in
the same direction, and the
director is tilted, giving a C2
layer structure.  This symmetry
is both polar and chiral.
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B2 Layer Structure
Spontaneous Nonpolar AND Reflection Symmetry Breaking
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Synclinic Ferroelectric

Anticlinic  Antiferroelectric

Ferro and Antiferroelectric Chiral Smectics
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The B2 Conglomerate is Antiferroelectric



(-) NOBOW Antiferro EO Switching



Stereogenic Elements
 Layer Chirality
 Layer Pair Clinicity
 Layer Pair Polarity

Antiferro
Phases

Common

Ferroelectric
Phases

Rare



BananasCalamitic Smectics

A Ferroelectric Banana?
 Most calamitic chiral smectics are ferroelectric (antiferroelectrics are very rare)
 Most bananas are antiferroelectric
 Glaser theory:  Syn-clinicity is favored entropically due to out-of-layer fluctuations
 Suppression of OLFs by the molecular structure allows anticlinic layer interfaces to

appear in the phase sequence.

Ferroelectric SmC*
Common

Antiferro SmCA*
Rare

Antiferro SmCSPA
Common

Ferroelectric SmCSPF
Rare

(R)-MHPOBC

X 84 CA* 118 Cγ* 119 C* 121 Cα* 122 A 148 I

 By far the best way to achieve this:
The famous MHOC tail

 The SmCA anticlinic phase occurs in
both unichiral and racemic MHPOBC
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(R,S)-MHOC
Tail

MHOBOW:  A SmCSPF by Control of Clinicity

Make it a
“ bilayer“

Tilt plane of
SmCA

Bow plane of
SmCSPF
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 Minority domains are a conglomerate showing the chiral EO of a
SmCSPF phase.

 Majority domains show no EO switching, but a strong ferroelectric
polarization reversal current.

 Focal conic domains are immiscible with the NOBOW SmCSPA phase in
the absence of a field, but become miscible upon application of a field,
where both materials are in the SmCAPF structure.
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KYOBOW is Unichiral, but forms a
SmCAPF Ferroelectric Racemate!
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Tilt Plane Polar Plane

The Amazing KYOBOW from Tokyo Tech!



Meyer paradigm: 1974 - 1997
The SmC has C2h symmetry;
molecular enantiomeric enrichment
is required for polar symmetry

Polar Axis (C2)

Chiral Molecules

Tilt Plane ≡ Normal to C2 
Polar Plane ≡ Contains C2 and z

z n

The SmCP Story was an FLC Paradigm Shift



FLC Paradigm Shifting Runs Amuck

 Claims of parity violation
– Goodby 2005 Chem. Commun. (unichiral FLC from a racemate)
– Goodby 2001 J. Mater. Chem.  (unichiral FLC from achiral mesogen)

 Claims of spontaneous reflection symmetry breaking
– Kishikawa 2005 JACS (achiral calamitic phenylbenzoate makes a

chiral SmC phase!)
– Niori 2004 MCLC (chiral nematic from an achiral bent-core mesogen)
– Takezoe and Watanabe 2002 JACS (doping an achiral bent-core

mesogen into a chiral nematic tightens the pitch)
– Takezoe 1999 Angew. Chem. IE (spontaneous de-racemization of

enantiomers in a SmC)
– Komitov 1998 Liq. Cryst. (chiral nematic from achiral mesogen)
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The conformational
chirality hypothesis
in LCs



Chiral Sodium Ammonium
Racemate Crystals, 1848

Louis Pasteur Charles Mauguin

Mauguin’s Twisted Nematic
Liquid Crystal, 1911

 Spontaneous reflection
symmetry breaking in LC
systems driven by surface
constraints is very
common.

 But, no chiral LC phase
from achiral or racemic
molecules had been seen.

 Observation of a chiral LC
phase is often used as
proof of molecular
enantiomeric excess.

Mauguin’s Twisted Nematic



Unichiral SSFLC Electro-optics
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P > 0 (right-handed)

P < 0 (left-handed)
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Enantiomeric EO Response

P = ƒ(ee)



Weird Observation from the ‘90s

BzO OH

NO2

HO C6H13

C1 0H21O

O

OH

C10H21O

O

O O

C6H13

NO2

HO O

C6H13

NO2

1)  DEAD, Ph3P,

2)  LiOH, H2O

DCC, DMAP

(S)-W314

We were shocked to discover
that samples of racemic 2-
octanol led to W314 samples
showing unichiral electro-optics
in SSFLC cells!

Response suggests ~0.3% ee?

P ~ -500 nC/cm2

P

P

 Parity violation?  We think NOT.
 SSFLC switching is one of the most sensitive detectors of chirality...



…and the Volume of Material in the Pixels is Small

Pixel volume as small as 25 µm3 = 25 Fl ~ 25 pg



…Suggests Possible New Applications

 Search for enantio-
enrichment on Titan

– Requires fast, high sensitivity
method for sensing ee remotely

 Chirality detectors for
combinatorial asymmetric
catalyst development

– Key to development of asymmetric
catalysts using combinatorial
methods

– Requires high throughput and
good discrimination in the 50% -
100% ee range

– Conventional method: 15,000
analyses in several months by
HPLC

– Current published state of the art:
15,000 analyses in 48 hrs using
reaction microarrays

Spot size ~ 150 µm

Titan

The Harvard chirality detector
M. Shair et al. J. Am. Chem. Soc., 123, 361 (2001)



First Approach to FLC Chirality Detector

 Pick an achiral or racemic SmC host (e.g.
racemic W314)

 Dope with sample of unknown ee

 Determine ee using SSFLC electro-optics

 Adapt the method for use in a large array
of physically separated pixels
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Behavior of the Authentically Racemic Host is Surprising

 The EO response of authentic
rac-W314 is complex

 After a few hours under drive, chiral
domains can be observed

 After a month under drive, the entire sample
segregates into two heterochiral domains
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Hetereochiral
domains formed in
rac-W314

Determination of
ee in domains from
careful risetime measurements



PE Can Drive Partial Deracemization (~4% ee)

ee > 0

ee < 0

G = -PS (ee) E
near ee = 0

entropy of mixing“extras” in a smectic C
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For Chirality Detector SmC is Problematical
G2 Approach:  Electroclinic Chirality Detection

 E-field induced deracemization is cool, but chirally
doped racemic W314 is not useful for measurement
of ee in our hands

 Preliminary work using achiral SmC hosts
uncovered several other interesting complexities
(i.e. it doesn’t work)

 Can the electroclinic effect in doped achiral SmA
hosts produce a useful chiral signal?



The Electroclinic Effect in the SmA*

 Bob Meyer also predicted the electroclinic effect in SmA*
materials

 At E = 0 there is no net tilt in a SmA*

 Due to free energy gain from combining an applied E field
with the collective polarization in tilted chiral smectics, a
tilt is induced in the SmA* with applied E

 θ ∝ E for small E

Effectively an E-field
induced SmC* with
collective polarization

Only happens with
chiral liquid crystal

E Pind



Doping a SmA Host (EK992)
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R1 R2

80% R1 = C8H17; R2 = OC6H13
5%   R1 = C8H17; R2 = OC12H25
15% R1 = C10H21; R2 = OC6H13

SmC - 43 - SmA - 59 - N - 65 - I

Host:  EK992
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Dopant:  Naproxen

Various ee, enriched in (S)

 The chiral signal
– Electroclinic electro-optic modulation depth ∆I

between crossed polarizers (IE on - IE off with the cell
oriented for maximum ∆I)

 Conditions of the measurements
– Sample:  Host doped with 1% by weight naproxen

samples of various ee

– EO cell:  3.7 µm gap ITO/glass with parallel-rubbed
low pretilt PI alignment layers

– EO measurement:  VApp = ± 10V square-wave drive @
1KHz, HeNe laser probe (spot size 20 x 20 µm), I
measured with a photodetector (V)

I (V) sin2 (2θ)

θ (deg from vertical)0 9022.5

∆I POL

ANA



A deVries Cell

I (V) sin2 (2θ)

θ0 9022.5

∆I

POL

ANA

wires

Alignment



Data Obtained with EK992 Host
∆I

 [n
V]

Naproxen %ee

The good news:  The chiral signal provides a good measure of naproxen ee.

The bad news:  TAC is different for each sample.  Since the electroclinic effect is strongly
dependent upon reduced temperature, the data had to be taken at a constant reduced
temperature, which was a different absolute temperature for each sample.

T-TAC

∆I
 [n

V]

All measurements taken
at T -TAC = 0.50°C

This method cannot be applied to a high throughput measurement device.

SmC - ~43 - SmA - ~59 - N



deVries Smectics to the Rescue

 For “normal” SmA* materials the electroclinic tilt is
small, and highly dependent on T-TAC

 deVries SmA* materials (very rare) in general seem to
show a much larger tilt, and much less temperature
dependence than normal SmA* materials

E(UP) E(DN)

E(UP) E(DN)

Normal

deVries



W435 (racemic W415)

SmC - 24 - SmA - 33 - I
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Host W435 (a deVries material)

 Conditions used for the measurements
– Host doped with 1% by weight of several naproxen

samples of various ee
– Sample filled into an ITO/glass LC cell with one rubbed

and one unrubbed nylon (elvamide) alignment layers
– ∆I measured as before

This method can be amazingly sensitive (W415 of ~ 0.01 % ee detectable)



∆I
 [m

V]

Naproxen %ee

T = 26°C

V = ±3.2 V/µm

T-TAC

∆I
 [m

V]

Method works at a single temperature

 Chiral signal from 1% Naproxen in achiral deVries SmA host
 Measurement good to about ± 5% ee
 Signal from about 10 pgm of Naproxen
 Adaptable to really high throughput measurement of ee
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(R*,R*)Pseudoephedrine %ee

V = ±5.6 V/µm
T = 30°C

Results with Pseudoephedrine

 1% by weight pseudoephedrine in W435 gives a smaller
signal than naproxen

 Consistent data was difficult to obtain, due to the volatility
AND insolubility of the pseudoephedrin in W435



Conclusions

 The achiral deVries host gives a huge signal compared to the non-
deVries host

 The signal is linear with ee of the dopant
 Though the T-TAC was different for the mixtures, in the deVries

host the signal was relatively temperature independent, allowing
for measurement of the ee of multiple samples at one absolute
temperature

 It is necessary to “scan around” the cell to find a well-aligned
region

 This method could in principle be applied to a large number of
samples in parallel (in physically separated “pixels”) if uniform
alignment could be obtained

 The actual amount of naproxen in the probe beam
 is ~ 10 pgm (10-11 gm)

 This method could be applied to ~ 0.25 pg
(5 x 5 µm pixels)

 Optimization of the host is possible

ee?



What Now?

 Measure ee of the product of some asymmetric
reactions

– Homogeneous mixture?
– Interference from catalyst?

 Develop a parallel method - measurement “pixels”
in an array

– ee microdisplay has physically separated pixels, uniform
electronics (should be much less expensive than video
microdisplays)

– Very relaxed lifetime specification suggests high yield
manufacturability…

– Is it possible to get the required “clean molecular alignment”?

 Key issue - low conversion is indistinguishable
from low enantioselectivity
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