Hydrogen Production with Mixed Protonic-Electronic Conducting Perovskite Membranes

Eric D. Wachsman UF-DOE High Temperature Electrochemistry Center Department of Materials Science and Engineering University of Florida Gainesville, FL 32611 ewach@mse.ufl.edu

UF-DOE HiTEC

Outline

- Introduction
- Fundamentals and Materials Development
- Membrane Reactor Fabrication and Results
- Recent Membrane Materials Advances
- Conclusions

Concept - Autothermal Catalytic Membrane Reactor for Production of Pure H₂

Cost of Hydrogen Production from Natural Gas*

$CH_4 + 0.375 O_2 + 1.25 H_2O = CO_2 + 3.25 H_2$

DOE's Future Gen

- Hydrogen and electricity co-generation from coal
- Zero emissions and CO₂ capture

"Hydrogen Production from Fossil Fuels with Proton and Oxygen-Ion Transport Membranes,"

E. D. Wachsman and M. C. Williams, Interface, Volume 13, No.3, Fall 2004

Outline

- Introduction
- Fundamentals and Materials Development
- Membrane Reactor Fabrication and Results
- Recent Membrane Materials Advances
- Conclusions

OXIDE-ION CONDUCTING MIEC's

• Ionic <u>and</u> electronic conductivity results in O_2 permeation limited by oxide-ion conductivity σ_{V_0} . UF-DOE HITEC

OXIDE-ION vs. PROTONIC CONDUCTION

- Oxygen ions jump from a filled (O_0^x) to a vacant $(V_0^{\bullet \bullet})$ site
- H-bonded protons form an OH group (OH₀•)
- Protons move around O_0^x and jump to neighboring O_0^x

PROTONIC vs. OXIDE-ION CONDUCTORS

Figure 2 Conductivities of typical protonic conductor based on perovskite-type Teraoka, et al (1998) oxides. Iwahara, et al.

 σ_i and σ_e of La_{0.8}Sr_{0.2}Co_{0.8}Fe_{0.2}O_{3-d}

- Protonic conductors have comparable ionic conductivity but negligible electronic conductivity
- H₂ flux limited by electronic conductivity ($\sigma_{e'}$) •

Adding Electronic Conductivity to a Proton Conductor

 Add electronic conductivity by doping Ce site with multivalent cation (M^{3+/2+}) that can be reduced to 2+

 $-M_{Ce}$ " = M_{Ce} + e' (n-type conduction)

E. D. Wachsman and N. Jiang, October 2, 2001, U.S. Patent No. 6,296,687.

- Match ionic radii for
 - Phase stability
 - Proton conductivity
 - $-> Eu^{3+/2+}$

Conductivity of $BaCe_{1-x}M_xO_{3-d}$ as a function r_M , Iwahara et al (1993)

H₂ Flux Relationship

$$J_{OH_{O}} = -\frac{1}{L} \left[\frac{RT}{4F^2} \int_{P_{O_2}}^{P_{O_2}'} \sigma_t t_{OH_{O}} t_{V_{O}} d\ln P_{O_2} + \frac{RT}{2F^2} \int_{P_{H_2}'}^{P_{H_2}'} \sigma_t t_{OH_{O}} (t_{V_{O}} + t_{e'}) d\ln P_{H_2} d\ln P_{H_2} \right]$$

Proton flux across calculated using Wagner equation:

- Assumes that bulk diffusion is rate limiting step
- σ_t is the total conductivity

- $\sigma_i = z_i q u_i [i], (i = OH_0, V_0, e')$

- Transference number, $t_i = \sigma_i / \sigma_t$
 - High flux requires both high protonic and high electronic conductivity
- F is Faraday's constant
- L is the membrane thickness
- Integrate both O₂ and H₂ potential gradients

Complex Defect Equilibria

Charge Neutrality	n	р	$[V_o^{"}]$	$[OH_0]$	$[Eu'_{Ce}]$	$[Eu_{Ce}^{''}]$
$n = 2[V_0^{\bullet \bullet}]$	${2K_R}^{\frac{1}{3}}P_{O_2}^{-\frac{1}{6}}$	$\frac{K_i}{\{2K_R\}^{\frac{1}{3}}} P_{O_2}^{\frac{1}{6}}$	$\left(\frac{K_R}{4}\right)^{\frac{1}{3}}P_{O_2}^{-\frac{1}{6}}$	$\{\frac{K_{R}K_{W}^{3}}{4}\}^{\frac{1}{6}}P_{O_{2}}^{-\frac{1}{12}}P_{H_{2}O}^{\frac{1}{2}}$	$\frac{K_{i}[Eu]_{t}}{K_{A}\{2K_{R}\}^{\frac{1}{3}}}P_{O_{2}}^{\frac{1}{6}}$	$[Eu_{Ce}^{/\prime}] = [Eu]_t$
$[Eu_{Ce}^{\prime\prime}] = [V_O^{\bullet\bullet}]$ p << K _A	$\left\{\frac{K_{R}}{[Eu]_{t}}\right\}^{\frac{1}{2}}P_{O_{2}}^{-\frac{1}{4}}$	$\left\{\frac{K_i^2[Eu]_t}{K_R}\right\}^{\frac{1}{2}}P_{O_2}^{\frac{1}{4}}$	$[Eu]_l$	$\{K_{W}Eu_{r}\}^{\frac{1}{2}}P_{H_{2}O}^{\frac{1}{2}}$	$\{\frac{K_i^2[Eu]_i^3}{K_A^2 K_R}\}^{\frac{1}{2}} P_{O_2}^{\frac{1}{4}}$	$[Eu_{Ce}^{/\prime}] = [Eu]_t$
$[Eu_{Ce}^{//}] = [V_{O}^{\bullet\bullet}]$ $p >> K_{A}$	$\{\frac{K_i K_R}{K_A [Eu]_t}\}^{\frac{1}{3}} P_{O_2}^{-\frac{1}{6}}$	$\left\{\frac{K_i^2 K_A [Eu]_i}{K_R}\right\}^{\frac{1}{3}} P_{O_2}^{\frac{1}{6}}$	$K_{R}\left\{\frac{K_{A}[Eu]_{t}}{K_{t}K_{R}}\right\}^{\frac{2}{3}}P_{O_{2}}^{-\frac{1}{6}}$	${K_W K_R}^{\frac{1}{2}} {\frac{K_A [Eu]_I}{K_i K_R}}^{\frac{1}{2}} {P_{O_2}^{-\frac{1}{12}} P_{H_2 G}^{\frac{1}{2}}}$	$[Eu'_{Ce}] = [Eu]_t - [Eu''_{Ce}]$	$K_{R} \left\{ \frac{K_{A}[Eu]_{t}}{K_{t}K_{R}} \right\}^{\frac{2}{3}} P_{O_{2}}^{-\frac{1}{6}}$
$[Eu'_{Ce}] = 2[V_O^{\bullet\bullet}]$	$\left\{\frac{2K_{R}}{[Eu]_{t}}\right\}^{\frac{1}{2}}P_{O_{2}}^{-\frac{1}{4}}$	$\left\{\frac{K_i^2[Eu]_t}{2K_R}\right\}^{\frac{1}{2}}P_{O_2}^{\frac{1}{4}}$	$\frac{[Eu]_t}{2}$	$\left\{\frac{K_{W}Eu_{t}}{2}\right\}^{\frac{1}{2}}P_{H_{2}O}^{\frac{1}{2}}$	$[Eu_{Ce}^{\prime}] = [Eu]_t$	$\{\frac{2K_{A}^{2}K_{R}[Eu]_{t}}{K_{t}^{2}}\}^{\frac{1}{2}}P_{O_{2}}^{-\frac{1}{4}}$
$n = [OH_O^{\bullet}]$	$\{K_{W}K_{R}\}^{\frac{1}{4}}P_{O_{2}}^{-\frac{1}{8}}P_{H_{2}O}^{\frac{1}{4}}$	$\left\{\frac{K_{i}^{4}}{K_{W}K_{R}}\right\}^{\frac{1}{4}}P_{O_{2}}^{\frac{1}{8}}P_{H_{2}O}^{-\frac{1}{4}}$	$\left\{\frac{K_R}{K_W}\right\}^{\frac{1}{2}} P_{O_2}^{-\frac{1}{4}} P_{H_2O}^{-\frac{1}{2}}$	$\{K_{W}K_{R}\}^{\frac{1}{4}}P_{O_{2}}^{-\frac{1}{8}}P_{H_{2}O}^{\frac{1}{4}}$	$\{\frac{K_W K_R [Eu]_t^4}{K_A^4 K_i^4}\}^{-\frac{1}{4}} P_{O_2}^{\frac{1}{8}} P_{H_2O}^{-\frac{1}{4}}$	$[Eu'_{Ce}] = [Eu]_t$
$[Eu_{Ce}^{/}] = [OH_{O}^{\bullet}]$	$\left\{\frac{K_{W}K_{R}}{\left[Eu\right]_{t}^{2}}\right\}^{\frac{1}{2}}P_{O_{2}}^{-\frac{1}{4}}P_{H_{2}O}^{\frac{1}{2}}$	$\{\frac{[Eu]_{t}^{2}K_{i}^{2}}{K_{W}K_{R}}\}^{\frac{1}{2}}P_{O_{2}}^{\frac{1}{4}}P_{H_{2}O}^{-\frac{1}{2}}$	$\frac{[Eu]_l^2}{K_W} P_{H_2O}^{-1}$	[<i>Eu</i>] _t	$[Eu]_t$	$\{\frac{K_{A}^{2}K_{W}K_{R}}{K_{i}^{2}}\}^{\frac{1}{2}}P_{O_{2}}^{-\frac{1}{4}}P_{H_{2}O}^{\frac{1}{2}}$
$2[Eu_{Ce}^{//}] = [OH_O^{\bullet}]$ $p << K_A$	$\left\{\frac{K_{W}K_{R}}{4[Eu]_{t}^{2}}\right\}^{\frac{1}{2}}P_{O_{2}}^{-\frac{1}{4}}P_{H_{2}O}^{\frac{1}{2}}$	$\left\{\frac{4[Eu]_{t}^{2}K_{i}^{2}}{K_{W}K_{R}}\right\}^{\frac{1}{2}}P_{O_{2}}^{\frac{1}{4}}P_{H_{2}O}^{-\frac{1}{2}}$	$\frac{[Eu]_{l}^{2}}{\kappa_{W}}P_{H_{2}O}^{-1}$	2[<i>Eu</i>] _t	$\{\frac{4[Eu]_{t}^{4}K_{i}^{2}}{K_{W}K_{R}K_{A}^{2}}\}^{\frac{1}{2}}P_{O_{2}}^{\frac{1}{4}}P_{H_{2}O}^{-\frac{1}{2}}$	$[Eu]_t$
$2[Eu_{Ce}^{//}] = [OH_O^{\bullet}]$ $p >> K_A$	$\{\frac{K_W K_R K_i^2}{4K_A^2 [Eu]_t^2}\}^{\frac{1}{4}} P_{O_2}^{-\frac{1}{8}} P_{H_2O}^{\frac{1}{4}}$	$\{\frac{4K_{A}^{2}K_{i}^{2}[Eu]_{I}^{2}}{K_{W}K_{R}}\}^{\frac{1}{4}}P_{O_{2}}^{\frac{1}{8}}P_{H_{2}O}^{-\frac{1}{4}}$	$\{\frac{4K_{A}^{2}K_{R}[Eu]_{\ell}^{2}}{K_{W}}\}^{\frac{1}{2}}P_{O_{2}}^{-\frac{1}{4}}P_{H_{2}O}^{-\frac{1}{2}}$	$\{4K_{A}^{2}K_{W}K_{R}[Eu]_{I}^{2}\}^{\frac{1}{4}}P_{O_{2}}^{-\frac{1}{8}}P_{H_{2}O}^{\frac{1}{4}}$	$[Eu]_t = [Eu_t] - [Eu_{Ce}^{//}]$	$\{\frac{K_{A}^{2}K_{R}K_{W}[Eu]_{l}^{2}}{4K_{i}^{2}}\}^{\frac{1}{4}}P_{O_{2}}^{-\frac{1}{8}}P_{H_{2}O}^{\frac{1}{4}}$
[<i>Eu</i> [/] _{<i>Ce</i>}] = <i>p</i>	$\frac{K_i}{[Eu]_t}$	[<i>Eu</i>] _t	$\{\frac{[Eu]_{\iota}^{2}K_{R}}{K_{\iota}^{2}}\}P_{O_{2}}^{-\frac{1}{2}}$	$\{\frac{K_{R}K_{W}[Eu]_{i}^{2}}{K_{i}^{2}}\}P_{O_{2}}^{-\frac{1}{4}}P_{H_{2}O}^{\frac{1}{2}}$	$[Eu]_t$	K _A

Modeling Defect Equilibria and Transport -effect of P_{H2}, P_{O2}, P_{H2O}

Defect concentration for a logarithmical space for the case of x=0.05 (a) electrons (b) protons © hole (d) oxygen vacancy S. J. Song, E. D. Wachsman, S. E. Dorris, and U. Balachandran, *Solid State Ionics*, **149**, 1-10 (2002).

Modeling Defect Equilibria and Transport

Fig 2. Proton and other defect concentrations as function of P_{O_2} , at 700°C.

 $K_S = 10^{-14}$ $K_{OX} = 1.5 * 10^{-5}$ $K_I = 1 * 10^{-11}$ $K_W = 10$ A/B ratio = 1 Dopant level x=0.05. (a) $P_{H_2O} = 10^{-6} atm$ (b) $P_{H_2O} = 10^{-2} atm$

Selection of Dopant - Conductivity as a Function of P_{O_2}

- BaCe_{0.85}Gd_{0.15}O_{2.93}
 - Negligible n-type electronic conductivity except at very high temperature >1000°C
 - N. Bonanos (1992)
- BaCe_{0.85}Eu_{0.15}O_{2.93}
- Significant n-type electronic conductivity at much lower temperature and higher P_{O2}
 - J. Rhodes and E.D. Wachsman (2001).

H₂ Flux Relationship

$$J_{OH_{O}} = -\frac{1}{L} \left[\frac{RT}{4F^2} \int_{P_{O_2}}^{P_{O_2}'} \sigma_t t_{OH_{O}} t_{V_{O}} d\ln P_{O_2} + \frac{RT}{2F^2} \int_{P_{H_2}'}^{P_{H_2}'} \sigma_t t_{OH_{O}} (t_{V_{O}} + t_{e'}) d\ln P_{H_2} d\ln P_{H_2} \right]$$

Flux ~ 1 /membrane thickness (L)

- At high temperature (>750°C) permeation is bulk transport controlled
 Flux is linear with 1/L
- At lower temperature permeation is surface kinetic controlled

Outline

- Introduction
- Fundamentals and Materials Development
- Membrane Reactor Fabrication and Results
- Recent Membrane Materials Advances
- Conclusions

Hydrogen Membrane Cell Fabrication

CShibiiytg sadi þyðva galemdand hæathetheil film

Fabrication of Membrane Reactor

Hydrogen Membrane Evaluation

All tubes are continuously leak checked by Ar tracer in feed gas

Hydrogen Permeation and Leak Testing

- Confirms membranes are leak free
- Capable of producing 100% purity H_2

Activation energy of ~0.9 eV indicates flux limited by σ_e

– σ_{OH} . activation energy ~ 0.5 eV

• H_2 -3% H_2O balance Ar / SrCe_{0.9}Eu_{0.1}O₃/He

Area normalized membrane flux comparable to best in literature.

However...

- H_2 -3% H_2O balance Ar / SrCe_{0.9}Eu_{0.1}O₃/He
- H_2 balance He / $SrCe_{0.95}Tm_{0.05}O_3$ / 20% O_2 balance He [1] S. Cheng, V. K. Gupta, and J. Y. S. Lin, Solid State Ionics 176 (2005) 2653.
- 4% H₂ 3% H₂O balance He / Ni-BaCe_{0.8}Y_{0.2}O₃ / N₂ with 100ppm H₂
 [2] C. Zuo, T. H. Lee, S.-J. Song, L. Chen, S. E. Dorris, U. Balachandran, and M. Liu, Electrochem. Solid-State Lett., 8 (2005) J35

Hydrogen Production

 Pure H₂ produced directly by internal steam reforming CH₄
 • H₂ flux even higher than from comparable H₂ feed UF-DOE HiTEC

Hydrogen Production

Water gas shift reaction: $CO + H_2O \rightarrow CO_2 + H_2$

- 3% CO and H_2O balance He
- Solid lines are $H_2O/CO=1$, dashed lines are $H_2O/CO\approx 2$

Outline

- Introduction
- Fundamentals and Materials Development
- Membrane Reactor Fabrication and Results
- Recent Membrane Materials Advances
- Conclusions

Total conductivity maximum at ~10% Eu

Increasing Eu concentration:

- Decreases σ_{OH} •
- Increases $\sigma_{e'}$

H₂ flux limited by electronic conductivity

Conclusions

- High temperature protonic conductors offer tremendous potential for H_2 production
- Adding electronic conductivity significantly increases H₂ flux
- Demonstrated H_2 permeation flux of ~10 cc/min
 - H₂ flux is proportional to [P_{H2}]^{1/4}
 - H₂ flux is limited by electronic conduction
- Demonstrated *pure* H_2 production from internal steam reformed CH_4
- Demonstrated *pure* H₂ production from water-gas-shift reaction
 - Increased H₂ production of membrane reactor *La Chatlier*
- Increasing Eu-dopant concentration will significantly increase H_2 permeation and production
 - Demonstrated >10X increase in t_e
 - Should result in 6 liter/hr H_2 production per tube

Acknowledgements

NASA Contract NAG3-2930 DOE HiTEC Contract DE-AC05-76RL01830

Heesung Yoon Takeun Oh Jianlin Li Sun Ju Song Jamie Rhodes

Hydrogen Production, Transport, and Storage 2

Symposium B4 *The Electrochemical Society Chicago, May 6-11, 2007*

Abstracts should be submitted via the ECS website by January 3, 2007.

Comments and inquiries about the symposium may be sent to the organizers:
E. D. Wachsman, University of Florida, *ewach@mse.ufl.edu*M. C. Williams, NETL, *mark.williams@netl.doe.gov*M. Heben, NREL, *Michael_heben@nrel.gov*A. Manivannan, NETL, *manivana@netl.doe.gov*B. P. Maupin, U.S. Department of Energy, *paul.maupin@science.doe.gov*C. V. Ramani, Illinois Institute of Technology, *ramani@iit.edu*

