Materials Challenges in Solid Oxide Fuel Cells

Anil V. Virkar

Department of Materials Science & Engineering 122 S. Central Campus Drive, University of Utah Salt Lake City, UT 84112 Phone: (801) 581-5396 anil.virkar@m.cc.utah.edu

A Lecture on Solid Oxide Fuel Cells Presented at UCSB Summer School Santa Barbara, CA August 7, 2006

Objectives of the Lecture

- 1) To serve as an introduction to SOFC; science and technology.
- 2) To identify key materials and microstructure- related parameters which determine performance of SOFC.
- 3) To identify and discuss thermo-mechanical issues concerning anode-supported cells.
- 4) To provide information on the fabrication of anode-supported SOFC and testing of button cells.
- 5) To provide a source of relevant literature.

Notes and Disclaimers

- The material given here is not complete, either in content, coverage of topics, and should be considered as reference material. There are numerous research articles, review articles, books, and symposia proceedings on this subject.
- Important source of literature is the series of proceedings volumes of ECS SOFC symposia, including the SOFC-IX being held at this meeting.
- The instructor's own knowledge of the field is by no means complete (it is a constant process of learning) and also the instructor cannot guarantee that it is without misconceptions.

Lecture Format

- 1) To provide a number of viewgraphs with several pictorials and illustrations.
- 2) To provide parametric equations that can assist in designing cells by allowing for parameter measurements the objective is not to conduct detailed modeling.
- 3) To provide illustrative calculations.
- 4) To provide a list of selected references for one interested in further details.
- 5) The approach will be to give more material in these slides than can be covered in a two hour lecture.

Course Organization: Topics

Topic 1: A Brief Discussion of Solid Oxide Fuel Cell (SOFC) including relevant thermodynamics. <u>Topic 2:</u> SOFC Materials: Electrolyte, Cathode, Anode; Cell Architecture on the Basis of Support <u>Topic 3:</u> Sources of various voltage losses, and their dependence on cell parameters and test conditions. **Topic 4:** Cell Design for Enhanced Performance Topic 5: Cell Design – Thermo-mechanical Considerations **Topic 6: Cell Fabrication Topic 7: Cell Testing**

Topic 1: A Brief Description of Solid Oxide Fuel Cells (SOFC)

Three Components: a) Cathode

- b) Electrolyte
- c) Anode

Most of the SOFC use oxygen ion (O⁻²) conducting solid electrolyte. Limited work has been done on SOFC based on proton (H⁺) conductors.

A Planar Cell and Test Fixture

SEM Micrograph

SOFC 1 kW Stack

Stack dimensions: 5.5" × 5.5" × 4.625" Volumetric power density = ~500 Watt/Liter Internal manifolds; Cross-flow

Technology Objective: Higher specific power, greater efficiency, longer life, and lower cost

Functions of the Three Components

- <u>Cathode</u>: Transport of oxygen from the gaseous oxidant $(O_2 + N_2)$ through the porous cathode to the cathode/electrolyte interface diffusion/convection. Transport of electrons.
- <u>Cathode:</u> Conversion of O_2 into $2O^{-2}$ ions and transfer into the electrolyte electrochemical reaction of reduction.
- <u>Electrolyte</u>: Transport of O⁻² ions through the electrolyte towards the electrolyte/anode interface ionic conduction.
- <u>Anode:</u> Transport of gaseous fuel $(H_2 \text{ or } H_2 + CO)$ through the porous anode towards the anode/electrolyte interface diffusion/convection. Transport of electrons.
- <u>Anode:</u> Reaction of fuel (H_2 or $H_2 + CO$) with O⁻² ions to form H_2O or $H_2O + CO_2$ and release of electrons for transport through the external circuit, through the load, to the cathode electrochemical reaction of oxidation.

A Simplified Equivalent Circuit for SOFC

Ref. 'Fuel Cells and Fuel Batteries', H. A. Liebhafsky and E. J. Cairns

Fuel cell is essentially a primary battery where fuel is continually supplied to the anode, and oxidant is continually supplied to the cathode. The free energy of the oxidation of fuel is converted into electrical energy. The operation of the fuel cell is one way. Thus, it is not limited by the Carnot cycle, unlike a cyclic process, such as a heat engine. Being a battery, it can be represented by an equivalent circuit using a voltage source and, in the simplest case, using an internal resistance. When a load is connected in the external circuit, work is derived.

Voltage vs. Current (or Current Density)

Fuel Cell with Hydrogen as the Fuel

The chemical reaction with H₂ as the fuel is H₂ + $^{1}/_{2}O_{2} \rightarrow$ H₂O

In a fuel cell, the reaction occurs electrochemically. In what follows, we will assume the electrolyte to be an oxygen ion conductor. Then, the reactions at the two electrodes are:

<u>Cathode:</u> $\frac{1}{2}O_2 + 2e' \rightarrow O^{-2}$ Reduction of O atoms into O⁻² ions O⁻² ions transport through the electrolyte towards the anode.

<u>Anode:</u> $H_2 + O^{-2} \rightarrow H_2O + 2e'$ The electrons transport through the external circuit performing useful work. The overall reaction is the sum of the two.

<u>The Overall Reaction:</u> $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$

 ΔG^o : Standard free energy change

 ΔG : Free energy change (partial pressures different from 1 atm).

Fuel Cell Efficiency (Standard State, Reversible) Standard Gibbs Free Energy Change for the Reaction $\Lambda G^o = \Delta H^o - T \Delta S^o$ All partial pressures are at 1 atm Introduction to Thermodynamics of Materials D. R. Gaskell ΔH^o = Standard enthalpy (*H*) change (*H* of one mole of H₂O at T and 1 atm. partial Pressure – H of one mole of H₂ at T and 1 atm. partial pressure – H of $\frac{1}{2}$ mole of O₂ at T And 1 atm. partial rpessure) ΔS^o = Standard entropy change. *F*: Faraday constant (96,487 Coulombs/mol.) Standard Gibbs Free Energy Change in terms of the Nernst Voltage $\Lambda G^o = -2FE^o$ 'Introduction to Thermodynamics of Materials', D. R. Gaskell Maximum Work (reversible process) in standard state is given by $w'^o_{max} = -\Delta G^o = 2FE^o$

Thermodynamic Efficiency when the cell is operated reversibly, and in standard state

$$\eta_{rev}^{o} = \frac{|\Delta G^{o}|}{|\Delta H^{o}|} = \frac{w_{\text{max}}^{o}}{|\Delta H^{o}|} = \frac{2FE^{o}}{|\Delta H^{o}|} \qquad \begin{array}{c} \text{E}^{o} = 0.972 \text{ at} \\ 800^{\circ}\text{C} (1073 \text{ K}) \end{array}$$

When operated reversibly, the power is nearly zero.

Fuel Cell Efficiency (Non-Standard State, Reversible)

Gibbs Free Energy Change for the reaction when Reactants and products not in Standard States

 $\Delta G = \Delta H - T \Delta S$

Partial pressures different from 1 atm.

Gibbs Free Energy Change in terms of the Nernst Voltage $\Delta G = -2FE$

Maximum Work (reversible process) is given by

 $w'_{\text{max}} = -\Delta G = 2FE$

Thermodynamic Efficiency when the cell is operated reversibly

$$\eta_{rev} = \frac{|\Delta G|}{|\Delta H|} = \frac{w_{\text{max}}}{|\Delta H|} = \frac{2FE}{|\Delta H|} = \frac{2FE}{|\Delta H|}$$

For the assumption of an ideal gas, $\Delta H = \Delta H^o$ However, $\Delta S \neq \Delta S^o$

 $S_{H_2} = S_{H_2}^o - R \ln p_{H_2}$ and similarly for other species. $S_{H_2}^o =$ Partial molar entropy of hydrogen in the standard state

Thermodynamic Efficiency $\Delta G^{o} = \Delta H^{o} - T\Delta S^{o} = -247,500 + 55.85 T \text{ j/mol.} \text{ From Gaskell}$ $\Delta G = \Delta H - T\Delta S = \Delta H^{o} - T \left(\Delta S^{o} - R \ln p_{H_2O}^{fuel} + R \ln p_{H_2}^{fuel} + \frac{1}{2} R \ln p_{O_2}^{air} \right)$

	ΔH^{o}	ΔG^{o}	$\eta^o = \frac{\left \Delta G^o\right }{\left \Delta H^o\right }$	ΔG	$\eta = \frac{\left \Delta G\right }{\left \Delta H\right }$	$\eta_{0.8} = \frac{2F \times 0.8}{\left \Delta H\right }$
Temp. K	Standard Enthalpy (J/mol.)	Standard Free Energy (J/mol.)	Standard Therrmodynamic Efficiency (%)	$p_{O_2}^{air} = 0.21$ $\left(\frac{p_{H_2O}^{fuel}}{p_{H_2}^{fuel}}\right) = \frac{0.03}{0.97}$	Thermo -dynamic Efficiency (%)	Efficiency at 0.8 V (%)
1073	-247,500	-187,573	76%	-211,623	85.5%	78%
973	-247,500	-193,158	78%	-214,967	86.9%	78%
873	-247,500	-198,743	80%	-218,310	88.2%	78%
773	-247,500	-204,328	82.5%	-221,654	89.6%	78%
673	-247,500	-209,913	85%	-224,997	90.9%	78%
573	-247,500	-215,498	87%	-228,341	92.3%	78%

Free Energy Change $\Delta G = \Delta G^{o} + RT \ln \begin{pmatrix} p_{H_2O}^{fuel} \\ p_{H_2}^{fuel} \sqrt{p_{O_2}^{air}} \end{pmatrix} = \overline{G}_{H_2O}(\text{fuel}) - \overline{G}_{H_2}(\text{fuel}) - \frac{1}{2}\overline{G}_{O_2}(\text{air}) \\ --(1) \quad \overline{G}_i = \text{Chemical potential or} \\ \text{Standard Free Energy and the Equilibrium Constant} \end{cases}$ $\Delta G^{o} = -RT \ln K_{eq} = -RT \ln \left(\frac{p_{H_2O}^{fuel}}{p_{H_2}^{fuel} \sqrt{p_{O_2}^{fuel}}} \right) \qquad \text{In the fuel itself, the reaction} \\ \text{In the fuel itself, the reaction} \\ \text{H}_2(\text{fuel}) + 1/2O_2(\text{fuel}) \Rightarrow \text{H}_2O(\text{fuel}) \\ \text{Is in equilibrium. Thus,} \\ \Delta G = 0 = \Delta G^{\circ} + RT \ln K_{eq} \\ --(2) \end{array}$ Free Energy Change in terms of Oxygen Partial Pressures Substitute for ΔG° from (2) into (1) $\Delta G = -RT \ln \left(\frac{\sqrt{p_{O_2}^{air}}}{\sqrt{p_{O_2}^{fuel}}} \right) = -\frac{1}{2} RT \ln \left(\frac{p_{O_2}^{air}}{p_{O_2}^{fuel}} \right) \quad --(3)$ Maximum (Reversible) Work $w'_{FC}^{max} = -\Delta G = \frac{1}{2} RT \ln \left(\frac{p_{O_2}^{air}}{p_{O_2}^{fuel}} \right)$ From work is the same as reversible, isothermal expansion of half a mole of oxygen gas. Maximum work is the same as 16

Isothermal Reversible Expansion of an Ideal Gas

Cylinder

$$w'_{FC}^{\text{max}} = -\Delta G = \frac{1}{2} RT \ln \left(\frac{p_{O_2}^{air}}{p_{O_2}^{fuel}} \right)$$

Free Energy and Reversible Work (contd.)

Maximum (Reversible) Work for a Carnot Cycle

$$w_{Carnot}^{\max} = \frac{1}{2} R (T_{hot} - T_{cold}) \ln \left(\frac{p_{O_2}^{air}}{p_{O_2}^{fuel}} \right)$$

Figure: A p-V diagram comparing a fuel cell and a Carnot engine.

B'

Volume

Pressure

A'

18

An Illustration

Fuel: H₂=97%, H₂O=3%: 1 atm. $p_{H2}^{o}=0.97$ atm, $p_{H2O}^{o}=0.03$ atm Oxidant: Air (21% O₂): 1 atm. $p_{O2}^{o}=0.21$ atm, T = 800°C = 1073 K

Standard Free Energy of H₂(g) + ¹/₂O₂(g) \rightarrow H₂O(g) $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = -247,500 + 55.85T$ $K_{eq} = \exp\left(-\frac{\Delta G^{o}}{RT}\right) = \frac{p_{H_2O}^{o}}{p_{H_2}^{o} \left(p_{O_2}^{fuel}\right)^{1/2}}$ $p_{O_2}^{air} = \left(\frac{p_{H_2O}^{o}}{p_{H_2}^{o}}\right)^2 \exp\left(\frac{2\Delta G^{o}}{RT}\right)$ $p_{O_2}^{fuel} = \left(\frac{p_{H_2O}^{o}}{p_{H_2}^{o}}\right)^2 \exp\left(\frac{2\Delta G^{o}}{RT}\right)$ $p_{O_2}^{fuel} = 5.23 \times 10^{-22} \text{ atm}$

Nernst voltage:
$$E = \frac{RT}{4F} \ln \left(\frac{p_{O_2}^{air}}{p_{O_2}^{fuel}} \right) = \frac{8.3144 \times 1073}{4 \times 96487} \ln \left(\frac{0.21}{5.23 \times 10^{-22}} \right)$$
$$= 1.0966 \text{ V}$$

Thermodynamic Efficiency

$$\eta = \frac{2FV}{-\Delta H} = \frac{\text{Work Derived}}{|\text{Enthalpy Change}|}$$

Voltage Efficiency $\eta_v = \frac{V}{E} = \frac{\text{Work Derived}}{|\text{Gibbs Free Energy Change}|}$

The objective is to maximize η_v for a given power level, or maginize power at a given η_v .

Maximize Power at Given Efficiency or Efficiency at Given Power

Power Density at a Given Efficiency

Efficiency at a Given Power Density

Either way, the lower the cell resistance, the better

Thermodynamics in Terms of Cell Parameters and Load

Thermodynamics in Terms of Cell Parameters R_i and Load (contd.) Е **Equivalent Circuit** Current $I = \frac{L}{R_r + R_r}$ $\begin{array}{c} & & & \\ &$ Time Required to Consume One Mole of Hydrogen $t = \frac{(R_i + R_L)2F}{(R_i + R_L)2F}$ $w' = Pt = VIt = 2FV = \frac{2FER_L}{(R_L + R_L)} = \frac{-\Delta G \frac{R_L}{(R_L + R_L)}}{(R_L + R_L)}$ Work Done Heat Dissipated $Q' = Q't = \frac{2FER_i}{(R_i + R_I)} = \frac{-\Delta G \frac{R_i}{(R_i + R_I)}}{\Delta G < 0}$ The Sum $w'+Q'=2FE=-\Delta G$ 23

Thermodynamics in Terms of Cell Parameters and Load (contd.)

First Law $\Delta U = Q - w = U_2 - U_1$ Q = Heat absorbed by the system w = Work done by the system Isothermal Process $Q = T(S_2 - S_1) - T\Delta S_{irr}$ $\Delta S = S_2 - S_1 = \frac{Q}{T} + \Delta S_{irr}$ 'Introduction to the Thermodynamics of Materials' D. R. Gaskell Isobaric Process $w = w' + P(V_2 - V_1)$

Isobaric Process $W = W + I(v_2 - v_1)$

For an Isothermal-Isobaric Process

- $\Delta G = G_2 G_1 = U_2 + PV_2 TS_2 U_1 PV_1 + TS_1$ $\Delta G = -2FE \qquad \Delta G = -T\Delta S_{irr} - w'$ The above gives Maximum possible work Loss - degree of irreversibility.
 - $w' = -\Delta G T\Delta S_{irr}$ $w' = 2FE T\Delta S_{irr}$

We also have $w' = Pt = VIt = 2FV = \frac{2FER_L}{(R_i + R_L)} = 2FE - 2FE \frac{R_i}{(R_i + R_L)}$

Thermodynamics in Terms of Cell Parameters and Load (contd.)

Degree of Irreversibility

$$\Delta S_{irr} = \frac{2FE}{T} \left(\frac{R_i}{R_i + R_L} \right) = \frac{\Delta G}{T} \left(\frac{R_i}{R_i + R_L} \right)$$

Rate of Irreversible Entropy Production

$$\frac{dS_{irr}}{dt} = \frac{\Delta S_{irr}}{t} = \frac{2FE}{T} \left(\frac{R_i}{R_i + R_L}\right) \times \frac{E}{2F(R_i + R_L)} = \frac{E^2 R_i}{T(R_i + R_L)^2}$$

Thermodynamic Efficiency

$$\eta = \frac{2FV}{|\Delta H|} = \frac{2FE}{|\Delta H|} \left(\frac{R_L}{R_i + R_L}\right) = \eta_{rev} \left(\frac{R_L}{R_i + R_L}\right) = \frac{|\Delta G|}{|\Delta H|} \left(\frac{R_L}{R_i + R_L}\right)$$
Need to
Lower R_i

Rate of Heat Exchange with the Surroundings Heat produced per mole of hydrogen consumed

$$Q = T(S_2 - S_1) - T\Delta S_{irr} = T(S_2 - S_1) - 2FE\left(\frac{R_i}{R_i + R_L}\right)$$

Note that $\Delta S = S_2 - S_1 < 0$.

Rate of heat production (exothermic)

$$\overset{\circ}{Q} = \frac{Q}{t} = \frac{Q}{\frac{2F(R_i + R_L)}{E}} = \frac{T(S_2 - S_1)}{2F(R_i + R_L)} - \frac{E^2 R_i}{(R_i + R_L)^2} \overset{\text{N}}{=}$$

What Does this all Mean For an SOFC?

- Magnitude of free energy of the reaction (with free energy < 0) must be as high as possible to achieve the highest possible conversion of chemical energy into electrical energy. With H₂ (or CO) as the fuel, this implies, <u>the lower the temperature</u>, <u>the higher is the thermodynamic efficiency</u>.
- 2) The internal cell resistance must be as small as possible. Thus, every effort must be made to lower the overall cell resistance. Since the V-I relationship is usually nonlinear, it is necessary to address voltage losses (polarizations) at both electrodes as well. The higher the temperature, the lower the resistance.

Now we will devote next several slides on understanding what are the main contributions to the cell 'resistance', and how to lower the cell resistance, which is in fact the main part of this part of this lecture₇

Topic 2: SOFC Materials: Electrolyte, Cathode, Anode; Cell Architecture on the Basis of Support

- <u>Electrolyte</u>: A dense (no open, connected porosity) Yttria Stabilized Zirconia (YSZ) A solid solution between ZrO_2 and Y_2O_3 (~8 mol.% Y_2O_3 , ~92 mol.% ZrO_2).
- <u>Anode:</u> A porous, two-phase composite of Ni + YSZ.
- <u>Cathode:</u> A porous, two-phase composite of LSM + YSZ. (LSM: Sr-doped LaMnO₃; typical composition – $La_{0.8}Sr_{0.2}MnO_{(3-\delta)}$).

YSZ Electrolyte: Defect Chemistry $Y_xZr_{(1-x)}O_{(2-x/2)}$

Over the temperature and oxygen partial pressure ranges of interest, the predominant point defects are oxygen vacancies. The electroneutrality condition is given by

 $\left[Y_{Zr}\right] = 2\left[V_O^{\bullet\bullet}\right]$

For this reason, YSZ is predominantly an oxygen ion conductor.

LSM Cathode: Defect Chemistry

LSM: $La_{(1-x)}Sr_{x}MnO_{(3-\delta)}$ is a perovskite

Mn is predominantly in +3 state. Sr substitution on the A-site (La-site) leads to the creation of oxygen vacancies. This further leads to the absorption of oxygen by oxidizing Mn from +3 to +4 states. Charge compensation is achieved by the formation of electron holes. Thus, LSM is predominantly a p-type material.

$$V_O^{\bullet\bullet} + \frac{1}{2}O_2(g) \rightarrow O_O^{\times} + 2h^{\bullet}$$

 σ Electronic conductivity

$$_{el} \propto p_{O_2}^{1/4}$$

Other SOFC Materials

- <u>Electrolyte</u>: Rare earth oxide doped CeO_2 (e.g. Gd_2O_3 -CeO₂ - GDC); Sr-doped and Mg-doped LaGaO₃ (LSGM).
- <u>Cathode:</u> Single Phase Sr-doped LaCoO₃ (LSC), Srdoped LaFeO₃ (LSF), LSCF, etc.; Composite – LSM + Rare earth oxide doped $CeO_2 - e.g.$ GDC, LSM + LSGM; LSF + GDC, LSCF + GDC, etc.
- Anode: Ni + Rare earth oxide doped CeO₂ GDC; Cu + CeO_2 ; La-doped SrTiO₃, etc.

Many of these materials are currently being explored as they offer certain advantages over the state of the art materials; e.g. LSGM has higher ionic conductivity than YSZ. However, there also are associated challenges. Thus, state of the art materials stated earlier (or small variations from them) continue to be widely used.

SOFC Designs Based on Relative Thicknesses

ELECTROLYTE-SUPPORTED

CATHODE-SUPPORTED

- Anode Support or Anode Current Collector
- Anode Functional Layer
- Electrolyte
- **Cathode Functional** Layer

Cathode Current Collector or Support

ANODE-SUPPORTED

Types and Approximate Magnitudes of Conductivities (Resistivities) of the Various Layers (800°C)

- Anode Support or Current Collector: Electronic ~1,000 S/cm (~0.001 Ωcm).
- Anode Functional Layer: Electronic ~500 S/cm (~0.002 Ωcm).
- Electrolyte: Ionic ~ 0.033 S/cm ($\sim 30 \Omega$ cm).
- Cathode Functional Layer: Electronic ~50 S/cm (0.02 Ωcm).
- Cathode Current Collector or Support: Electronic ~100 S/cm (~0.01 Ωcm).

Calculations of the Approximate Ohmic Area Specific Resistance (ASR) at 800°C for the Three Types of Designs

Electrolyte Ionic Resistivity: $\rho_e = 30 \ \Omega cm$

Cathode (Both Layers) Electronic Resistivity: $\rho_c = 0.01 \ \Omega \text{cm}$ Anode (Both Layers) Electronic Resistivity: $\rho_a = 0.005 \ \Omega \text{cm}$

Electrolyte Thickness: ℓ_e (cm) Anode (Total) Thickness: ℓ_a (cm) Cathode (Total) Thickness: ℓ_c (cm)

Ohmic Area Specific Resistance (ASR): $R_i = \rho_e \ell_e + \rho_c \ell_c + \rho_a \ell_a \Omega cm^2$

Electrolyte Supported: $(30x0.015+0.01x0.01+0.005x0.01) = 0.4502 \ \Omega cm^2$ Cathode Supported: $(30x0.001+0.01x0.2+0.005x0.01) = 0.0321 \ \Omega cm^2$

Anode Supported: $(30x0.001+0.01x0.01+0.005x0.1) = 0.0306 \Omega cm^2$

Electrolyte-Supported: High ASR Electrode-supported: Low ASR

<u>Cell Resistance = ASR (Ω cm²)/Cell Area (cm²) = Ω (ohms)</u>

A Typical, Five Layer Anode-Supported Cell: Various Layers and their Functions

- <u>Anode support:</u> Ni + YSZ, ~0.3 to ~1 mm, ~40% porosity, Coarse microstructure: Electronic conduction, fuel gas transport.
- <u>Anode Functional Layer:</u> Ni + YSZ, ~10 to ~20 microns, ~25% porosity, fine microstructure: Mixed Ionic (YSZ) and Electronic (Ni) conduction, fuel gas transport electrochemical reaction.
- <u>Electrolyte:</u> YSZ, ~5 to 10 microns, dense (no connected porosity), fine microstructure: Ionic conduction.
- <u>Cathode Functional Layer:</u> LSM + YSZ, ~10 to ~20 microns, ~25% porosity, fine microstructure: Mixed Ionic (YSZ) and Electronic (LSM) conduction, oxidant gas transport electrochemical reaction.
- <u>Cathode Current Collector:</u> LSM, ~50 to ~150 microns, ~40% porosity, Coarse microstructure: Electronic conduction, oxidant gas transport.

Anode Support

Anode Functional Layer Electrolyte Cathode Functional Layer 36 Cathode Current Collector
An SEM Micrograph of an Anode-Supported Cell (Microstructure)

Attributes of Anode-Supported Design

- Easy fabrication with Ni + YSZ as starting materials.
- NiO and YSZ neither dissolve in each other nor react with each other.
- The presence of two phases helps maintain the microstructure fine.
- The electrolyte/anode bi-layer or cathode/electrolyte/anode tri-layer can be fabricated in a single firing step.
- The presence of a large amount of Ni improves heat transfer.
- Cell is quite robust.

Topic 3: Sources of various voltage losses, and their dependence on cell parameters and test conditions.

- Voltage loss associated with 'resistance' to gas transport through porous anode Anode Concentration Polarization or Concentration Overpotential.
- Voltage loss associated with 'resistance' to gas transport through porous cathode Cathode Concentration Polarization or Concentration Overpotential.
- Voltage loss associated with the 'resistance' to electrochemical oxidation of fuel at the anode Anode Activation Polarization or Activation Overpotential.
- Voltage loss associated with the 'resistance' to electrochemical reduction of oxygen at the anode Cathode Activation Polarization or Activation Overpotential.
- Voltage loss associated with resistance to ion transport through the electrolyte, electron transport through electrodes Ohmic Loss.

Gas Transport through Electrodes

Fluxes of hydrogen and water vapor through anode depend upon: (1) Binary H_2 - H_2O Diffusivity. (2) Porosity. (3) Pore size. (4) Tortuosity. (5) Thickness. (6) Partial pressure of hydrogen in the fuel, $p^{\circ}H_2$.

Flux of oxygen through cathode depends upon: (1) Binary O_2 - N_2 diffusivity. (2) Porosity. (3) Pore size. (4) Tortuosity. (5) Thickness. (6) Partial pressure of oxygen in the oxidant, p^0O_2 .

 $H_2 + O^{-2} \rightarrow H_2O + 2e$ Anode Interlayer $1/_2O_2 + 2e \rightarrow O^{-2}$ Cathode Interlayer

Fluxes and Current Density

$$I = Current in Amps (A)$$

 $i = \frac{I}{4}$

$$A =$$
 Active Cell Area (cm²)

$$i = Current Density (A/cm^2)$$

 j_{H_2} = Flux of Hydrogen (moles/(sec.cm²))

For every one mole of H_2 passed (consumed) per unit time per unit area 2 moles of electrons are passed in the external circuit; that is 2*F* where *F* = Faraday constant (96,487 Coulombs/mole). Thus,

$$i = 2Fj_{H_2}$$

Also, for every one mole of H_2 consumed per unit time per unit area half a mole of O_2 is consumed per unit time per unit area and one mole of H_2O is formed per unit time per unit area. Thus,

$$i = 2F |j_{H_2}| = 2F |j_{H_2O}| = 4F |j_{O_2}|$$

Gas Transport and Voltage Loss

E' = Nernst voltage across the electrolyte when cell is under load (finite non zero current)

Concentration polarization or concentration overpotential at the anode + cathode

Electrode Design for Minimizing Concentration Polarization

- For a given current density, minimize partial pressure variations through the electrodes.
- Minimize the thicknesses of the electrodes consistent with sufficient in-plane electrical conduction (low sheet resistance) and mechanical ruggedness.
- Increase porosity again consistent with in-plane electrical conduction and mechanical ruggedness.
- Increase pore size.

Materials Processing procedures required to ensure that the desired microstructures at the desired places are realized

Gas Transport through Porous Bodies Modes of Transport

- Binary diffusion: (Anode:H₂, H₂O; Cathode: O₂,N₂).
- Knudsen diffusion (if the pore size is comparable to the mean free path).
- Viscous flow.
- Surface diffusion.

Important Microstructural Parameters

(a)Volume Fraction Porosity, (b)Pore Size, (c) Tortuosity From the standpoint of cell design, need parameters that can be readily measured. Assumptions:

- 1) Viscous flow neglected.
- 2) Surface diffusion neglected.
- 3) Transport by effective binary diffusion treat tortuosity factor as a fitting parameter not valid if the pore size is very small (less than about 0.25 microns).

For more details, see: 'Dusty Gas Model' Mason and Malinauskas

Effective Diffusivities

Effective Diffusivity through the Anode:

 $D_{eff(a)} = \frac{V_{v(a)}}{\tau_a} D_{H_2 - H_2 O} \qquad V_{v(a)} = \text{Anode Volume Fraction Porosity}$

 $D_{H_2-H_2O}$ = Binary Diffusivity τ_a = Anode Tortuosity

Effective Diffusivity through the Cathode:

 $D_{eff(c)} = \frac{V_{v(c)}}{\tau_c} D_{O_2 - N_2} \quad V_{v(c)} = \text{Cathode Volume Fraction Porosity}$ $D_{O_2 - N_2} = \text{Binary Diffusivity} \quad \tau_c = \text{Cathode Tortuosity}$

 $D_{H_2-H_2O}$, $D_{O_2-N_2}$: From handbooks or calculations $V_{v(a)}, V_{v(c)}$: From measurements τ_a, τ_c : No direct way to measure $D_{eff(a)}, D_{eff(c)}$: Can be measured in principle.

Some Values of Binary Diffusivities

 cm^2/s

Chapman Enskogg Model for Binary Diffusivity

$$D_{AB} = \frac{1.86 \times 10^{-3} T^{3/2} (1/M_A + 1/M_B)^{1/2}}{p \sigma_{AB}^2 \Omega}$$

'Mass Transfer in Fluids' E. L. Cussler

 M_A, M_B = Molecular weights

 Ω = Collision Integral

 σ_{AB} = Average Molecular Diameter (in Angstroms)

 $T = \text{Temperature (K)} \quad p = \text{Pressure (in atmospheres)}$

Values at 800°C

$$D_{H_2-H_2O}$$
 ~6.52 cm²/s
 $D_{O_2-N_2}$ ~1.28 cm²/s

Depending upon the porosity and tortuosity, these numbers can be lower by more than an order of magnitude. Design of electrode microstructure (porosity) is important.

Higher binary diffusivity of H₂-H₂O is another reason for choosing anode-supported.

Measurement of Effective Diffusivities: An Electrochemical Method

How is the Voltage vs. Current Density Polarization Curve Influenced by Transport through Porous Electrodes?

Limiting Current Density

Current Density

- i_{as} = Anode limiting current density (hydrogen partial pressure at the anode/electrolyte approaching zero)
- i_{cs} = Cathode limiting current density (oxygen partial pressure at the cathode/electrolyte approaching zero)

At the limiting condition, $p_{H_2}^o >> p_{H_2}^{'}(i)$. This leads to a limiting flux. That is, $j_{H_2} \propto (p_{H_2}^o - p_{H_2}^{'}(i))$ or $j_{H_2} \propto p_{H_2}^o$ when $p_{H_2}^o >> p_{H_2}^{'}(i)$ In the observe solution the area do functional lower is imported.

In the above schematic, the anode functional layer is ignored.

Anode Limiting Current Density Behavior

$$i_{as} \sim \left(\frac{2F}{RT}\right) \frac{p_{H_2}^o}{l_a} D_{eff(a)}$$

 $p_{H_2}^o$: Partial pressure of hydrogen just outside the anode l_a : Anode thickness

Under most operating conditions, this behavior is not observed. However, a cell can be operated using a diluted fuel (low partial pressure of hydrogen in the fuel) to induce this type of behavior. The purpose is to experimentally determine the effective diffusivity, which is usually not a strong function of the relative amounts of H_2 and H_2O .

Cell Performance in Fuels with Different Hydrogen Partial Pressures

Cell performance in a stack near inlet Cell performance in a stack near outlet

Current Density

Schematic

In a stack of cells, portion of the cell at the inlet is exposed to a high p_{H2} , while that near the outlet is exposed to low p_{H2} , as the fuel gas becomes depleted in H_2 .

Anode Concentration Polarization or Overpotential

Voltage loss associated with fuel gas transport through the porous anode is known as anode concentration polarization or overpotential. It depends on the anode porosity, anode tortuosity, anode thickness; effective diffusivity, partial pressure of hydrogen in the fuel (how depleted is the fuel), and temperature.

Experimental Evidence on the Effect of Anode Concentration Polarization on Cell Performance

Only Anode Support Thickness varied

Only Anode Support Porosity varied

Anode Concentration Polarization - Calculations

These calculations assume $p^{\circ}H_2 = 0.97$. Downstream in a stack, the $p^{\circ}H_2 \ll 0.97$, due to depleted fuel. Thus, anode concentration polarization downstream is even greater.

Only Anode Support Thickness Varied

Only Anode Support Porosity Varied

Cathode Concentration Polarization or Overpotential

Cathode concentration polarization can be similarly estimated. In anode-supported cells this contribution is usually small, as long as the cathode is thin enough and porous enough. However, depending upon other design criteria, this may be significant.

In anode-supported cells, for typical cathode porosities and thicknesses, and over the range of operating conditions, the cathode concentration polarization loss is usually small – about 10 mV. $_{55}$

Voltage Loss Associated with Electrochemical Reactions at the Electrodes: Activation Polarization

- Cathode Reaction: $1/2O_2 + 2e' \rightarrow O^{-2}$
- Anode Reaction: $H_2 + O^{-2} \rightarrow H_2O + 2e'$
- Species in the Gas Phase: $O_2(\text{cathode})$, $H_2(\text{anode})$, $H_2O(\text{anode})$
- Species in YSZ: O⁻²
- Mobile Species in Electrode Materials: e'(LSM-cathode, Nianode)

The above gives only the overall electrode reactions. These comprise of many series and parallel steps. These include: (a) Adsorption, (b) Dissociation, (c) Surface Diffusion, (d) Electron Transfer. If any one of the series steps is much slower than the other, one can describe the mechanism in terms of a rate-limiting step (RDS). Experimentally, this is very difficult to determine – and the literature is full of many different RDS. This underscores the difficulty in isolating such steps unequivocally. We will not much dwell on this topic. Our focus will be on identifying those material/microstructural parameters which influence electrode reactions, and can be experimentally measured and directly related to cell performance.

Activation Polarization

<u>Activation Polarization or Overpotential:</u> This is associated with the actual Charge transfer reaction, which in solid state electrochemistry generally occurs at a Three Phase Boundary (Electrolyte-Electrocatalyst-Gas Phase) (TPB).

 η_{act} : Voltage loss associated with the charge transfer reaction. This is usually a thermally activated process. A phenomenological equation, known as the Butler-Volmer equation, originally developed for aqueous electrochemistry, is often used to describe it. 57

The Cathode Reaction

Monolithic (Screen-Printed) vs. Composite Cathode LSM + YSZ Cathode

Composite Cathode Features

- The cathode functional layer is a mixture of an ionic (YSZ) and an electronic (LSM) conductor. This increases the total TPB and extends the reaction zone.
- YSZ must be contiguous to carry ionic current.
- LSM must be contiguous to carry electronic current.
- **Porosity must be contiguous** for gaseous transport.
- There must be large TPB length that is LSM should not completely cover YSZ particles.
- J. S. Newman and C. Tobias, J. Electrochem. Soc., **109** 1183 (1962).
 T. Kenjo, S. Osawa, and K. Fujikawa, J. Electrochem. Soc., **138** 349 (1991).
- C. W. Tanner, K-Z. Fung, and A. V. Virkar, J. Electrochem. Soc., 144 21 (1997).

Role of Cathode TPB on Performance

Black –PoresWhite –YSZRed or Blue – LSM

Cell 1

Cell 2

Maximum Power density at 800°C was ~**0.33** W/cm².

Maximum Power density was ~1.1 W/cm² at 800°C.

Color-Coded Electron Micrographs (taken on an Electron Microprobe)

Maximum Power density Of this cell was ~1.1 W/cm² at 800°C.

Good Cathode EPMA Micrograph

Maximum power density at 800°C was ~0.33 W/cm².

Poor Cathode EPMA Micrograph

Quantitative Features of the Composite Cathode Parameters

- Ionic conductivity (σ_i) or resistivity $(\rho_i = 1/\sigma_i)$ of the ionic conductor in the functional layer YSZ.(S/cm or Ω^{-1} cm⁻¹)
- Particle size of the YSZ (*d*) in the functional layer (cm).
- Porosity of the functional layer (V_v) .
- Charge transfer resistivity (ρ_{ct}). This is a function of temperature and oxygen partial pressure (local) (Ω cm).
- Three phase boundary length (l_{TPB}) (cm⁻¹).
- Thickness of the functional layer (*h*). Essentially no dependence for *h>>d*.

Assumptions: (a) Electronic conductivity of LSM is much greater than ionic Conductivity of YSZ. (b) Gas diffusion is fast (so porosity is not too low).

Then, $R_p = 0.0845 \ \Omega \text{cm}^2$ – a twelve-fold decrease in polarization resistance through microstructural design!

Fundamental parameter which governs electrochemical reaction is ρ_{ct}

How to Measure Charge Transfer Resistivity, ρ_{ct} ?

- Not very easily.
- Need to make electrodes with well-defined and varying three phase boundary length, l_{TPB} .
- This requires methods from microlithography.
- Measure area specific charge transfer resistance using methods such as impedance spectroscopy.

Activation Polarization at High Current Densities

- Polarization 'resistance' we described so far, including the effect of electrode microstructure, is applicable only at very low current densities linear (not ohmic) relation between current and voltage (overpotential).
- At high current densities, relationship between current and voltage (overpotential) is not linear. The most commonly used phenomenological equation is known as the Butler-Volmer equation.
- In either low or high current density regime, the relationship is thermally activated hence the term activation polarization.
- Experimentally, it is very difficult, if not impossible to determine the relationship between current and voltage. Hence, fitting to cell test data is the only practical approach if the objective is to design a cell.
- The simplest approach is to use a limiting case of the Butler-Volmer equation, known as the Tafel equation, applicable at high current densities. The use of Tafel equation also allows one to lump activation polarizations at both the cathode and the anode into a single expression.

Butler Volmer Equation and the Low Current Density Regime

$$i = i_o \left\{ \exp\left[-\frac{\alpha z F \eta_{act}}{RT}\right] - \exp\left[\frac{(1-\alpha)z F \eta_{act}}{RT}\right] \right\}$$

 1) 'Electrochemical Engineering Principles' G. Prentice
 2) 'Electrochemistry, P. H. Rieger

Linearized: Note; linear does not mean ohmic.

z: Number of electrons participating in the reaction.

F: Faraday constant (96,487 Coulombs/mole).

- *R*: Gas constant (8.3144 J/mol.).
- *T*: temperature (K).
- α : Transfer coefficient ($0 < \alpha < 1.0$).
- i_o : Exchange current density (Amp/cm²) (thermally activated).

We see that the Butler-Volmer equation gives the current density, *i*, as a function of the activation polarization, η_{act} , and not η_{act} as an explicit function of *i*. For very small values of the current density, the above simplifies to

$$\eta_{act} \approx \frac{RT}{zFi_o} i \approx R_p i$$

where $R_p = \frac{RT}{zFi_o}$

 Ωcm^2

is the charge transfer resistance (Ωcm^2), a measure of the resistance to the electrochemical reaction. ⁶⁸

Butler-Volmer Equation and the High Current Density Regime

The Butler-Volmer equation

$$i = i_o \left\{ \exp\left[-\frac{\alpha z F \eta_{act}}{RT}\right] - \exp\left[\frac{(1-\alpha)z F \eta_{act}}{RT}\right] \right\}$$

At high
$$\eta_{act}$$
, that is $-\frac{zF\eta_{act}}{RT} >> 1$

1

$$\eta_{act} \approx \frac{RT}{\alpha zF} \ln i_o - \frac{RT}{\alpha zF} \ln i = a + b \ln i$$

Tafel Equation

Or, for
$$\frac{zF\eta_{act}}{RT} >>$$

$$\eta_{act} \approx -\frac{RT}{zF(1-\alpha)} \ln i_o + \frac{RT}{zF(1-\alpha)} \ln i = a + b \ln i$$
 Tafel Equation

The Tafel equation is usually applicable for $i >> i_o$. In an SOFC, both of the electrode activation polarizations can be usually described by the Tafel equation at high overpotentials. 69

Exchange Current Density

Fast Electrode Process High Exchange Current Density

Slow Electrode Process Low Exchange Current Density

G_A: Activation Energy

Understanding Exchange Current Density

Negligible exchange of water between compartments Equivalent to negligible exchange current density

Very fine holes

Some water exchange between compartments Equivalent to low exchange current density

Greater water exchange between compartments Equivalent to higher exchange current density

Activation Polarization: Summary Points

- Activation Polarization exists at both electrodes cathode and anode.
- The general phenomenological equation used is the Butler-Volmer equation.
- In the general case, no simple relation can be given for the sum of activation polarization at the two electrodes as a function of current density.
- In the low current density regime, the relationship between overpotential, η_{act} , and current density, *i*, is linear. Thus, the activation polarization at the two electrodes can summed and expressed as a function of current density.
- In the high current density regime, the Tafel equation is assumed to be applicable. The η_{act} depends linearly on ln*i*. Thus, in this case also, the activation polarization at the two electrodes can be summed and expressed as a function of the logarithm of current density.
What to do for Designing a Good Cathode with a Functional Layer?

- YSZ Particle should be fine (~0.5 μ m or finer). Commercially available YSZ with 8 mol.% Y₂O₃ is satisfactory.
- LSM particle size should be fine (~0.5 μ m or finer).
- Mix YSZ and LSM in approximately 50:50 ratio.
- Apply on the YSZ electrolyte surface. Approximate thickness 10 to 20 microns. The porosity should be ~25%.
- Apply a layer of LSM over this layer. Thickness of this current collector layer should be ~50 to ~100 microns. Porosity should be about 45% or somewhat higher.
- Heat to ~ 1100 to 1200° C for 1 hour.

Minimum number of parameters required is 5 to describe performance. Unfortunately, voltage – current density plots are of very simple shapes, which can be fit with three arbitrary parameters. Thus, it is generally not possible to obtain a unique set of 74 parameters by fitting to cell performance data.

Schematics of Various Polarizations

Curve Fitting: Anode Support Thickness Varied

Only anode support thickness varied. Note all polarization curves fitted with the same four effective diffusivities – experimental validation of the model

Topic 4: Cell Design for Enhanced Performance

- A five layer anode-supported cell with standard materials (YSZ, LSM, Ni).
- Anode support of Ni + YSZ, approximately 50% of each by volume, porosity in excess of ~45%, coarse structure pore size several microns; thickness as small as possible practical 0.3 to 0.5 mm.
- Anode functional layer of Ni + YSZ, approximately ~60 vol.% YSZ, ~40 vol.% Ni, porosity ~25%, thickness ~5 to 20 microns; particle sizes on the order of 0.5 to 1 micron. If particle size is much smaller than 0.5 μ m, reduce thickness to ~2-3 μ m. Microstructure well-developed good inter-particle contact.
- Electrolyte, approximately ~ 8 to 10 microns thick, dense.
- Cathode functional layer of LSM + YSZ, approximately ~60 vol.% YSZ, ~40 vol.% LSM, porosity ~25%, thickness ~5 to 20 microns; particle sizes on the order of 0.5 to 1 micron. If particle size is much smaller than 0.5 μ m, reduce thickness to ~2-3 μ m. Microstructure well-developed good inter-particle contact.
- Cathode current collector, LSM, coarse structure, porosity ~45 or 50%; pore size several microns; thickness ~50 to 200 microns (0.05 to 0.2₇₇ mm).

Rationale for the Choices of Various Cell Microstructural/Geometric Parameters

- Anode Support: Minimize concentration polarization, even at low pH₂ (high fuel utilization) maximize *i_{as}*. Ensure sufficient strength (not too thin not too porous), sufficient electrical conductivity.
- Anode Functional Layer: Minimize activation polarization, even at low pH₂ large TPB length, small YSZ particle size, connected YSZ and connected Ni, modest porosity thick enough to spread out electrochemical zone thin enough to minimize concentration polarization.
- Electrolyte: Thickness not too critical, as long as below about 10 microns. Thick enough to be pinhole free.
- Cathode Functional Layer: Minimize activation polarization, even at low pO₂ large TPB length, small YSZ particle size, connected YSZ and connected LSM, modest porosity thick enough to spread out electrochemical zone thin enough to minimize concentration polarization.
- Cathode Current Collector: Minimize concentration polarization, even at low pO_2 (high oxidant utilization) maximize i_{cs} . Ensure sufficient electrical conductivity minimize sheet resistance.

Topic 5: Cell Design – Thermo-mechanical Considerations

- All three components (anode, cathode, electrolyte) and the cell are brittle can break, not bend.
- Strength is largely determined by the strength of the anode in anode-supported cells (thickest component). Typical strength is ~120 to ~150 MPa, sometimes even lower.
- Strength requirement is important from the standpoint of handling, thermal cycling, stresses due to non-uniform temperature distribution.
- Anode strength depends upon the relative amounts of Ni and YSZ, porosity, etc.
- Fracture toughness is another important fracture mechanical property.

Four-Point Bend Strength of Zirconia/Ni Anode-Supports as a Function of Zirconia Content (after reducing at 800°C for 24 hours under 5 liter/min of 10% H₂ + 90% N₂)

Fracture Toughness of Zirconia/Ni Anode-Supports as a Function of Zirconia Content

(Measured Using Single Edge Notch Bending (SENB) Technique, after reducing at 800°C for 24 hours under 5 liter/min of 10% H₂ + 90% N₂)

Thermo-mechanical Issues – Stresses in PEN

- PEN stands for the cell (Positive electrode Electrolyte Negative electrode).
- Thermal expansion coefficients of the three components are in general different.
- Elastic moduli (e.g. Young's) of the three components are in general different.
- At the sintering or cathode firing temperature, there are negligible stresses in the PEN structure.
- When cooled to room temperature, different components tend to shrink to different sizes dictated by their thermal expansion coefficients.
- However, they are bonded together. Thus, the unit as a whole needs to shrink as one body without causing cracks or delaminations. This leads to the establishment of stresses.
- Stresses are the highest at room temperature lower at the operating temperature.
- Objective is to design cells such that minimum possible damage occurs.

Thermo-Mechanical Considerations

- Differences in coefficients of thermal expansion.
- Differences in elastic properties, and component thicknesses.
- Cracking or delamination of layers.
- Flatness of the cell.
- Criteria for the selection of the best cell design.

What Happens when an Electrolyte-Anode Bilayer is Cooled from the Fabrication Temperature?

Electrolyte Thermal Shrinkage if it were free

Anode Thickness >> Electrolyte Thickness

But anode and electrolyte are bonded across the interface

Shrinkages and bow are shown exaggerated

Electrolyte/Anode Bi-Layer Structure

Objective: To identify conditions under which a crack may develop – then in practice avoid such situations

Finite Element Analysis of Anode-Supported Cells

Bi-Layer without a Delamination Crack

What Happens if Crack Develops along the Interface?

Release of Strain Energy by Cracking along Interface

G: Strain Energy Released when a Delamination Crack forms

<u>Conclusion:</u> For an anode-supported cell design, the thicker The YSZ film, the greater is the tendency for cracking <u>Message:</u> Make the electrolyte as thin as possible from the standpoint of mechanical integrity – fortunately, this good for resistance as well

An Illustration: An Estimation of the Maximum Electrolyte Thickness in Anode-Supported Cells

Typical Values $E_{el} \approx 200 \text{ GPa}$ Bending Neglected

 $\alpha_{el} \approx 10 \ge 10^{-6} / ^{\circ}C$

 $\alpha_{an} \approx 13 \ge 10^{-6} / {}^{o}\text{C}$

 $T_h \approx 1200^{\circ}\text{C} = 1473 \text{ K}$

 $T_l \approx 25^{\circ}\text{C} = 298 \text{ K}$

 30 J/m^2 (rather approximate – could be off 20%)

Maximum allowable electrolyte thickness

$$t_{el} < \frac{2\gamma_{\rm int}}{E_{el}(\Delta\alpha\Delta T)^2} \sim 24 \ \mu {\rm m}$$

Typical electrolyte thickness \sim 5 to 10 μ m

90

Complete Cathode-Electrolyte-Anode (PEN) Structure

Stress Analysis of the complete tri-layer structure can be similarly done usingFinite Element Analysis (FEA) using commercial software (e.g. ANSYS). DataRequired are: (a) Elastic properties of the three layers (or as many layers are there),(b) Thermal expansion properties of the three (or as many) layers, and (c) Thicknesses of the three (or as many) layers.

Results of some calculations

Cathode-Electrolyte-Anode Tri-layer: Crack Along Electrolyte-Anode Interface: Cathode matched with Anode

Stress State in the Absence of a Crack: Cathode Matched with Anode

Stresses when Delamination Crack forms between Anode and Electrolyte: Cathode Matched with Anode

Note relaxed stresses in the delaminated regions. Also note bending of the cathode-electrolyte bi-layer in the delaminated region.

Elastic Energy Release Rate Cathode Matched with Anode

Elastic energy release rate, G, is the energy released per unit area of the interface IF a crack forms. For a crack to form, this must exceed a certain material And structure (PEN) parameter – here $2\gamma_{int}$. That is, if $G > 2\gamma_{int}$, crack will form. Thus, the lower the G, the lower the tendency for crack formation.

The above implies that crack will most likely occur along electrolyte/anode interface, And not along cathode/electrolyte interface, assuming the γ_{int} is the nearly the same for both interfaces. But note the rather low values of G.

Cathode-Electrolyte-Anode Tri-layer Crack Along Electrolyte-Anode Interface Cathode matched with Electrolyte

Stress State in the Absence of a Crack Cathode Matched with Electrolyte

Stresses when Delamination Crack forms between Anode and Electrolyte Cathode Matched with Electrolyte

Elastic Energy Release Rate Cathode Matched with Electrolyte

Note: The G is high for cracks along both interfaces. Thus, cracking may occur along either interface. Also, the G is higher in this case (cathode matched with electrolyte) than in the previous case (cathode matched with anode).

Message: For anode-supported cells, better to match Cathode with anode – not with the electrolyte

Effect of Properties on Cell Flatness

- So far, we have neglected the role of bending stresses which is actually significant.
- Bending occurs due to differences in stresses in the various layers. Bending can be calculated using equilibrium conditions; Sum of forces = 0, Sum of moments = 0.
- Since thermal expansion coefficients are of the various layers are different, the level of bending (bow) will vary with temperature.
- Whether or not cells are flat is important in both stack assembly procedure used, and stresses that are generated.
- By choosing appropriate values of thermal expansion coefficients, elastic properties, and thicknesses, bow can be minimized.

Thus, for $\alpha_{\text{cathode}} \sim 14 \times 10^{-6}$ /°C, for the chosen values, the cell will be flat at room temperature.

- E_1 = Electrolyte Modulus = 210 GPa E_2 = Anode Modulus = 170 GPa
- $E_3 = Cathode Modulus = 50 GPa$

 α_1 = Electrolyte Th. Ex. Coeff. = 10.5 x 10⁻⁶/°C α_2 = Anode Th. Ex. Coeff. = 13 x 10⁻⁶ /°C 101 α_3 = Cathode Th. Ex. Coeff. = 10 to 15 x 10⁻⁶ /°C

Topic 6: Cell Fabrication

Cell fabrication by tape-casting followed by sintering is described in this section. This is probably the most common method of cell fabrication, although there likely are significant differences among developers insofar as the details are concerned. What is described is one of the approaches, and by no means the only approach. Also, it is to be emphasized that many details and variations from the process described here that are actually implemented in our process, are not given due to the proprietary nature of the work.

Cell Fabrication Steps

- 1) Raw materials and formulation
- 2) Tape casting the anode support, cutting to desired size
- 3) Applying the anode functional layer
- 4) Applying the electrolyte
- 5) Bisquing to ~1000°C for binder burnout
- 6) Application of the electrolyte layer
- 7) Sintering (1300 to 1500°C)
- 8) Applying the cathode functional layer
- 9) Applying the cathode current collector layer
- 10) Firing at ~1200°C

Processes have been developed for co-sintering the complete cell in a single high temperature step

Topic 7: Cell Testing

- 1) Button size cells (typical cathode area of 1 to 2 cm²) are typically _{tested} for general cell characterization.
- 2) Cells are tested under flooded conditions (high flow rates for both fuel and oxidant) thus during such tests, fuel and oxidant utilizations are very small. In such cases, the measured parameters correspond to a given set of fuel and oxidant utilization (depending upon gas compositions).
- 3) Cell is secured (using either glass or compression seals) in a test fixture, placed inside a furnace.
- 4) Cell is heated to ~700°C, and a mixture of $H_2 + N_2$ is passed over anode to reduce NiO to Ni leads to the creation of porosity. Then the fuel is passed over the anode ($H_2 + H_2O$ mixtures), and air (or $O_2 + N_2$ mixtures).
- 5) An electronic load box and/or a resistor box is used for testing.
- 6) Voltage vs. current data are collected. Usually, voltage (y-axis) is plotted vs. current density (x-axis).
- 7) Using a fast response electrochemical measuring instrument, sudden change in voltage that occurs immediately after interrupting the current is measured. This gives a measure of the ohmic contribution from the cell.

A Test Fixture for Testing Button Cells

Current Interruption

An oscilloscope trace

Effect of Various Cell Parameters on Performance

Electrolyte Thickness Varied

Anode Support Thickness Varied

The phenomenological equation stated earlier can be used to fit to the data. Some of the parameters can be obtained through separate, out of cell, measurements.

Anode Support Porosity Varied

Summary Statements

• I have tried to give some material on fundamental concepts for designing high performance, robust cells. The material given here is by no means complete. It is hoped that this might be useful as a starting point for someone interested in the subject. There are numerous articles in the literature one should read for further learning.