

Innovation for Our Energy Future

Semiconductor Materials and Tandem Cells for Photoelectrochemical Hydrogen Production: GaP_{1-x}N_x and Cu(In,Ga)Se,S)

ICMR Symposium on Materials Issues in Hydrogen Production

and Storage Santa Barbara, CA *August 24, 2006*

John A. Turner John_Turner@nrel.gov 303-275-4270

NREL is operated by Midwest Research Institute • Battelle

Sustainable Paths to Hydrogen

Direct Conversion Systems Visible light has sufficient energy to split water (H₂O) into **Hydrogen and Oxygen**

Combination of a Light Harvesting System and a Water Splitting System

Semiconductor photoelectrolysis
Photobiological Systems
Homogeneous water splitting
Heterogeneous water splitting
Thermal cycles

(Sunlight and Water to Hydrogen with No External Electron Flow)

REL National Renewable Energy Laboratory

Photoelectrochemical-Based Direct Conversion Systems

Goal of the Research

A Monolithic Photoelectrochemical Cell

- Combines a photovoltaic system \bullet (light harvesting) and an electrolyzer (water splitting) into a single monolithic device.
 - Electrolysis area approximates that of the solar cell - the current density is reduced.
 - Efficiency can be 30% higher than separated system.
- Balance of system costs reduced. ightarrow
 - Capital cost of electrolyzer eliminated
- Semiconductor processing ightarrowreduced.

Current Density vs. Voltage for 2 Pt Electrodes of Equal Area.

Chemical Reactions at a Semiconductor Electrolyte Interphase

Band Edges of p- and n-Type Semiconductors Immersed in Aqueous Electrolytes to Form Liquid Junctions

Technical Challenges (the big three) Material Characteristics for Photoelectrochemical Hydrogen Production

Electron

Efficiency – the band gap (E_g) must be at least 1.6-1.7 eV, but not over 2.2 eV, high photon to electron conversion.

Material Durability – semiconductor must be stable in aqueous solution

Energetics – the band edges must straddle H₂O redox potentials (Grand Challenge)

All must be satisfied simultaneously

REL National Renewable Energy Laboratory

Bandedge Energetic Considerations

T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, International Journal of Hydrogen Energy 27 (2002) 991–1022

REL National Renewable Energy Laboratory

Gallium Indium Phosphide/Electrolyte System

Used to gain a fundamental understanding of semiconductor/electrolyte junctions

Bandedge Energetic Considerations

T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, International Journal of Hydrogen Energy 27 (2002) 991–1022

REL National Renewable Energy Laboratory

Dual Photoelectrode Approach for Bandedge Mismatch and Stability Issues

Lower cost Fe_2O_3 electrode is a possibility, but while the system splits water, the efficiency is very low.

REL National Renewable Energy Laboratory

Metal Oxides – A materials assessment

PEC devices must have the same internal photon-toelectron conversion efficiency as PV devices.

- Transitions which impart color to the oxides typically involve d and f levels and are generally forbidden transitions = low absorption coefficients.
 - The low absorption coefficients result in the incident light penetrating deep into the material = 100's um of material
- Carrier mobilities in oxides are very low
 - Recombination of photogenerated carriers occurs before they can reach the semiconductor/electrolyte interface.
- Even good single crystals of metal oxides have very low energy conversion efficiencies due to inherently short diffusion lengths.

However a success in this area, e.g. an oxide with good to excellent conversion properties could revolutionize the PV industry as well as make PEC near-term.

NREL National Renewable Energy Laboratory

Approach: High Efficiency Materials and Low-Cost Manufacturing

PEC devices must have the same internal photon-to-electron conversion

efficiency as commercial PV devices.

- III-V materials have the highest solar conversion efficiency of any semiconductor material
 - Large range of available bandgaps
 -but
 - Stability an issue nitrides show promise for increased lifetime
 - Band-edge mismatch with known materials tandems an answer
- I-III-VI materials offer high photon conversion efficiency and possible low-cost manufacturing
 - Synthesis procedures for desired bandgap unknown
 -but
 - Stability in aqueous solution?
 - Band-edge mismatch?
- Other thin-film materials with good characteristics
 - SiC: low cost synthesis, stability
 - SiN: emerging material

💽 NREL National Renewable Energy Laboratory

Approach: Materials Summary

The primary task is to synthesize the semiconducting material or the semiconductor structure with the necessary properties. This involves material research issues (material discovery), multi-layer design and fabrication, and surface chemistry. Activities are divided into the task areas below – focus areas in *Green*:

- ✓ GaPN NREL (high efficiency, stability)
- ✓ CulnGa(Se,S)₂ UNAM (Mexico), NREL (Low cost)
- Silicon Nitride NREL (protective coating and new material)
- GaInP₂ NREL (fundamental materials understanding)
- Energetics
 - Band edge control
 - Catalysis
 - Surface studies

Gallium Indium Phosphide/Electrolyte System

Used to gain a fundamental understanding of semiconductor/electrolyte junctions

Review: Comparison of *p***-GalnP**₂ **and PEC/PV device**

Photocurrent time profile for PEC/PV Water-Splitting device, showing current decay due to corrosion.

Elemental Abundances in Earth's Crust

Element	Concentration (mg/kg)	Element	Concentration (mg/kg)
Gallium	19	Ρ	1050
Lead	14	Silicon	2.8 x 10 ⁵
Boron	10	Indium	0.25
Lithium	20	Silver	0.075
Tungsten	1.25	Tin	2.3
Cobalt	25	Uranium	2.7

Gallium is found in bauxite (aluminum ore). There are 2 million kg of Ga in Arkansas bauxite deposits alone. Also found in coal ash (up to 1.5%).

Hydrogen Evolution Current-Time Profile for p-GaN

S. Kocha, M. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler and J. A. Turner, "Electrochemical Investigation of the Gallium Nitride-Aqueous Electrolyte Interface", Journal of The Electrochemical Society, 1995, 142, pg. L238, NREL National Renewable Energy Laboratory L240.

III-V Nitrides for PEC Water Splitting Systems: GaP_{1-x}N_x

- GaN
 - Capable of water-splitting and stable
 - Band gap direct but too wide (~3.4 eV)
- GaP
 - Band edges almost aligned
 - Band gap indirect and too wide (~2.3 eV), but better
- GaP_{1-x}N_x
 - Addition of small amounts of N causes GaP band gap to narrow (bowing) and transition to become direct
 - Nitrogen enhances stability

GaP_{1-x}N_x Epilayer Direct Band Gap

Dr. Todd Deutsch

GaP_{1-x}N_x Bandgap as a Function of **Nitrogen Concentration**

- Control band gap energy by varying nitrogen composition,
- Direct band gap for all ightarrownitrogen concentrations, even at GaP 9994 N.0006
- The crossover from indirect to direct occurs significantly below the theoretically predicted 0.26% (F. Benkabou, J. P. Becker, M.

Certier, H. Aourag, Calculation of **Electronic and Optical Properties** of Zinc Blende GaP1-xNx. Superlattices and Microstructures, 1998. 23(2): p. 453-465.)

Percent Nitrogen

K.M. Yu, W. Shan, J. Wu, Nature of the fundamental band gap in GaN_xP_{1-x} alloys. Applied Physics Letters, 2000. 76(22): p. 3251-3253

Dr. Todd Deutsch

Corrosion experiments on GaP substrate clearly show the enhanced corrosion resistance from nitrogen addition.

Dr. Todd Deutsch

GaPN Stability Measured by Profilometry and by ICP-MS of Solution

Conditions

- Photocathode durability testing
 - 5mA/cm², AM 1.5, 24 hours, 3M H_2SO_4 , pulsed Pt treatment
 - Ga content of solutions by ICP-MS
 - Etching by profilometry
- <u>Represents ~300 hrs of stability for 1 um layer</u>

NREL National Renewable Energy Laboratory

Dr. Todd Deutsch

Band Edge Energetics

The band edges of these materials are too negative for spontaneous water-splitting.

Approach: Two configurations

One for material study and one for possible high-efficiency tandem cell.

- GaPN/tj/ p-GaP or n-silicon substrate
 - Undoped
 - No low energy transition expected

- GaPN/tj/ p/n silicon substrate (tandem)
 - Undoped
 - Low energy transition expected

NREL National Renewable Energy Laboratory

1 μm i-GaP. <u>9806</u> N.0194	1 μm p-GaP.9818N.0182
0.04 μm GaP	0.04 μm GaP
	n-Si
n-Si substrate	p-Si substrate
Ti/Pd/Al/Pd/AuOhmic contact	Al Ohmic contact
MF097	MF098

Light-Driven Water Splitting

MF771-4 2-electrode J-V in acid 1 sun illumination

GalnPN:Si – Two Tandem Cell Configurations

Stability by Profilometry

Ga_{.96}In_{.04}N_{.024}P_{.976}: Etched: 0.13µm/24hrs Ga_{.95}In_{.05}N_{.025}P_{.975}: Etched: 0.14µm/24hrs GalnP₂: 1-2µm/24hrs

Water Splitting

- Photon to chemical energy conversion efficiency
 - GalnPN: ~30%
 - GalnP₂: ~90%
- Zn-doped layer improves efficiency
- Nitrogen decreases electronic properties of material

Jeff Head, Paul Vallett

Goal: Evaluation of high efficiency thin-film CIS-based material

Electrodeposited CIGSS

- CIS material system: CuInSe₂ CuGaS₂
 - E_g range: 1.0 2.5eV
- CuGaSe₂: E_g = ~1.7
- High PV efficiencies in this system
- Potential low cost, low energy deposition
- Two configurations:
 - Single materials
 - As a layer in a multijunction system

Dr. Jennifer E. Leisch

Relationship of bandgap to alloy composition. Gray area represents compositions that produce bandgaps in the range 1.7 - 2.1eV

Goal: Evaluation of high efficiency thin-film material and thin-film based tandem cell

Goal: Thin-film based PEC tandem cell

Tandem Cell Configuration CGS Grown by Thermal Evaporation

Results – Band Positions

Illuminated Open Circuit Potential Measurements High intensity DC W lamp illumination

Jennifer E. Leisch

Goal: Thin-film based PEC tandem cell

Results – Band Energy Diagram

Energetics say: H_2O splitting, but very low currents

Why?

- Poor ITO TJ
- Kinetics for H₂
- Recombination
- Band shifting
- Corrosion

Results – Water Splitting Efficiency

Possible band edge alteration on anodic scan. . .

<u>J_{sc} (Cathodic Scan)</u> pH 6 RuHex, 1sun -5.7µA Acid, ~ 20 Suns -3.4μ A Base, ~ 20 Suns

-7µA

Jennifer E. Leisch

NREL National Renewable Energy Laboratory

Results – Stability

2mA/cm², 3M H₂SO₄, 2hrs. 100mW/cm² W Illumination .03mL/min-cm² H₂ Evolution

The high temperature CGS deposition process damages the ITO layer.

Electrodeposition may be a better approach.

IV – Goal: Low-Temp CuGaSe₂ Deposition

CuGaSe₂ Electrodeposition

$H_2SeO_3 + 4e^- + 4H^+ \Leftrightarrow Se + 3H_2O$ $E^0 = +0.739V$

Lincot, D., et al., Chalcopyrite thin film solar cells by electrodeposition. Solar Energy, 2004. 77(6): p. 725-737.

Dr. Jennifer E. Leisch

Film Microstructure

Phases Present in XRD Patterns						
Cu:Ga:Se	-600mV	-700mV	-800mV	-900mV	-1000mV	-1100mV
1:10:0.5	Cu _{2-x} Se					
1:10:1	CuSe					
1:10:1.5	CuSe, Cu₃Se₂	CuSe, Cu₃Se₂				
1:10:2	CuSe, Cu₃Se₂	CuSe, Cu₃Se₂	CuSe, Cu₃Se₂	CuSe, Cu₃Se₂	CuSe, Cu₃Se₂	CuSe

XRD No Ga-containing phases observed

Dr. Jennifer E. Leisch

NREL National Renewable Energy Laboratory

IV – Goal: Low-Temp CuGaSe₂ Deposition

Film Composition by ICP-MS

(inductively coupled plasma-mass spectrometery)

ullet

Cu:Ga:Se	-0.6V	-0.7V	-0.8V	-0.9V	-1.0V	-1.1V
1:10:0.5						
Cu (%)	41.86					
Ga (%)	32.68					
Se (%)	25.45					
1:10:1						
Cu (%)	33.18					
Ga (%)	30.71					
Se (%)	36.11					
1:10:1.5						
Cu (%)	39.03	32.06				
Ga (%)	1.76	21.73				
Se (%)	59.22	46.21				
1:10:2						
Cu (%)	37.14	33.32	33.69	31.85	35.47	27.00
Ga (%)	0.84	1.15	2.00	0.87	1.12	18.27
Se (%)	62.02	65.52	64.31	67.28	63.41	54.72

- Films close to the proper stoichiometry (1:1:2) were electrodeposited (ambient T and P)
- Gallium deposition can be obtained via codeposition mechanism
- Ga must be amorphous or of very small structure
- Excess Se inhibits Ga deposition
- Next step: Annealing

Dr. Jennifer E. Leisch

Gallium Indium Phosphide/Electrolyte System

Used to gain a fundamental understanding of semiconductor/electrolyte junctions

Band Edge Engineering

The goal is to shift the band edges by surface modification to provide the proper energetic overlap.

Metallo-Porphyrins

Octaethyl Porphyrin ~OEP~

Tetra(N-Methyl-4-Pyridyl)porphyrin ~TMPyP(4)~

Insoluble porphyrin dissolved in methlene chloride and electrode coated by drop evaporation. Water soluble porphyrin applied by soaking the electrode in a solution of the porphyrin.

Band Edge Engineering - GalnP₂

V_{FB} vs. pH for RuCl₃ + RuOEP Treated GalnP₂ Electrode

Photoelectrochemical Water Splitting

climate (°C)

ative to

325

300

275

250

225

200

175

- (),70' [dd

ntration -

ලි දි 50

Meth

300

400

300

Carbon dioxide concentration (ppmv)

Atmospheric carbon dioxide concentration

Atmospheric methane concentration

200

Thousands of years before present (Ky BP)

100

Current Staff Heli Wang Todd Deutsch, Postdoc Mark Reimann, Colorado School of Mines (PhD Student)

Recent Past

Jennifer Leisch , Colorado School of Mines (PhD 2006 – now at Stanford) Jeff Head, Colorado State University (SS- now at ASU) Paul Vallett, University of Vermont (SS) Scott Warren, Whitman College (SS - now at Cornell)

Others

Vladimir Aroutiounian, University of Yerevan, Armenia (CRDF, ISTC) Arturo Fernández, Centro de Investigación en Energía-UNAM, Mexico

Funding: DOE Hydrogen Program

