Freiberg University of Mining and Technology, Germany

Thermodynamics of High Temperature Materials Systems

Hans Jürgen Seifert

Summer School Advanced Thermostructural Materials Santa Barbara, August 9, 2006

Thermodynamics of High Temperature Materials Systems

Hans Jürgen Seifert

Outline

1. Introduction and motivation for thermodynamic calculations

- Computational thermodynamics
- CALPHAD approach (CALculation of PHAse Diagrams)
- Thermodynamic databases and software
- 2. Thermodynamic optimization of the Ce-O system
 - Thermodynamic modeling of solution phases
- 3. Precursor-derived Si-(B-)C-N ceramics
 - High temperature reactions of silicon carbide and silicon nitride ceramics
 - Crystallization and high temperature stability of Si-(B-)C-N ceramics

Thermodynamics of High Temperature Materials Systems

Hans Jürgen Seifert

Outline

- 4. Computational thermodynamics in heat shield engineering
 - The Y-Si-C-O system database
 - Active / passive oxidation of SiC
 - Phase reactions of Yttrium silicates and C/C-SiC composites
 - High temperature stability issues in the engineering of heat shields
- **5.** Conclusions

Combined Approach

CALPHAD

CALculation of PHAse Diagrams

CALPHAD (CALculation of PHAse Diagrams)

- Development of Optimized Thermodynamic Datasets stored in Computer Databases
- **Calculation of :**
 - Thermodynamic Functions
 - Liquidus Surface
 - Isothermal Sections
 - Isopleths
 - Potential Phase Diagrams

- Phase Fraction Diagrams
- Phase Compositions
- Scheil Solidification

Requires Modeling of Stoichiometric and Solution Phases Taking into Account the (Crystal-) Structures and Site Occupancies

...

CALPHAD (CALculation of PHAse Diagrams) Software

- LUKAS (BINGSS, BINFKT, TERGSS, TERFKT)
- THERMO-CALC
- FACTSAGE
- PANDAT
- MALT, MALT2
- MTDATA
- JMATPRO
- GEMINI
- •••

CALPHAD (CALculation of PHAse Diagrams) Databases

- SGTE, Scientific Group Thermodata Europe
 - SSOL2, SSOL4
 - SSUB3
 - Noble Metals
- Thermo-Calc: Steels, Ni-base, slags, ...
- ThermoTech: Ni-base, Al-, Mg-, ...
- PML: Al-, Ceramics

• •••

Calculated Ce–O System in Solid State from 60 to 67 mol. % O in comparison with experimental data.

Phases in the Partial Ce – O System

Related Crystal Structures:

CeO_{2-x} (ss) CaF₂ - type (Strukturbericht C1)

Compound Energy Formalism: $(Ce^{+3}, Ce^{+4})_1(O^{-2}, Va)_2$

C-Ce₂O₃ (ss) Mn₂O₃ - type (Strukturbericht D5₃, Ordered State of C1) Unit Cell: composed of 8 CaF₂-type cells. ¼ of O-ions removed, remaining atoms re-arrange towards these vacancies. Compound Energy Formalism: $(Ce^{+3}, Ce^{+4})_2(O^{-2})_3(O^{-2}, Va)_1$

Contains more O atoms than the ideal formula of the Mn_2O_3 .

Ce₂O₃ Stoichiometric phase description (Strukturbericht D5₂)

"Compound Energy" Formalisms – Reference Compounds

(A,B)_k(D,E)_I Solution phase with two sublattices and 4 species

Four compounds defined:

A : D A : E B : D B : E

Gibbs free energy for every compound to be determined

Here: $(Ce^{+3}, Ce^{+4})_1(O^{-2}, Va)_2$

(A,B)_k(D,E)_l Solution phase with two sublattices and 4 species

Modeling of solution phases; sublattice model described in the Compound Energy Formalism

(A,B)_k(D,E)_I Solution phase with two sublattices and 4 species

$$-S_{\rm m}^{\rm mix}T = RT \sum n^{\rm s}y_{\rm J}^{\rm s}\ln(y_{\rm J}^{\rm s})$$

- n^{s} Stochiometric coefficient (s: sublattice)
- y_{A}^{s} Site fraction of spezies A on sublattice s

 $\Sigma v_{\rm I}^{\rm s} = 1$

Compound Energy Formalism – Excess term of Gibbs free energy

(A,B)_k(D,E)_I Solution phase with two sublattices and 4 species

$${}^{\mathrm{E}}G_{\mathrm{m}} = \Pi y_{\mathrm{J}}^{\mathrm{s}} \sum y_{\mathrm{B}}^{\mathrm{t}} L_{\mathrm{A,B:D:G}} + \Pi y_{\mathrm{J}}^{\mathrm{s}} \sum y_{\mathrm{B}}^{\mathrm{t}} y_{\mathrm{D}}^{\mathrm{u}} L_{\mathrm{A,B:D,E:G}} + \dots$$

Compound Energy Formalisms – Gibbs free energy of solution phases

$$\begin{aligned} \textbf{Mixing Gibbs Energy} &= \sum \Delta_{f}^{\circ} G_{end} \Pi y_{J}^{s} \\ &+ RT \sum \sum n^{s} y_{J}^{s} \ln(y_{J}^{s}) + {}^{E} G_{m}. \end{aligned}$$

Phases in the Partial Ce – O System

CeO_{2-x} (ss) CaF₂ - type (Strukturbericht C1)

Compound Energy Formalism: $(Ce^{+3}, Ce^{+4})_1(O^{-2}, Va)_2$

Cubic close pack of Ce ions, where all the tetrahedral voids form the sublattice on which the 2-x O-ions are statistically distributed. **Electroneutrality condition** determines that site fractions on the two sublattices are not independent: Single variable y is equal 2-x.

$$y'_{Ce^{+3}} = y$$
 $y''_{Va} = \frac{y}{4}$
 $y'_{Ce^{+4}} = (1 - y)$ $y''_{O^{-2}} = \frac{1 - y}{4}$

No.	Paper	Experimental Technique	Measured Quantity	Composition	Temperature (K)	Remark
1.	Bevan & Kordis (1964)	Experiment with CO_2/CO & H_2O/H_2	Partial pressures O ₂	CeO _{1.5-} CeO ₂	909 - 1442	+
2.	Ackerman & Rauh (1971)	Mass Spectroscopy & Mass Effusion	Partial pressures CeO, CeO _{2,} Ce(g), CeO	$\begin{array}{c} \text{CeO}_{1.51} - \\ \text{CeO}_{1.53} \\ \text{CeO}_{1.5} - \\ \text{CeO}_{1.34} \end{array}$	2000 - 3000 1600 - 2000 1825 - 2320 1550 - 2040	+
3.	Iwasaki & Katsura (1971)	Experiment with $CO_2 \& CO_2 / H_2$ mixture	Partial pressures O ₂	CeO _{2.00}	900, 1000, 1100, 1227, 1300	+
4.	Campserveux & Gerdanian (1978)	Micro- Calorimetry	Partial pressures O ₂	CeO ₂	1353, 1296, 1244	+
5.	Kitayama et al. (1985)	Thermo- gravimetry	Partial pressures O ₂	$\begin{array}{c} CeO_2, \\ Ce_2O_3Ce_3O_5 \end{array}$	1000 – 1330	+

6.	Marushkin et al. (2000)	Knudsen cell, Mass spectrometry	Partial pressures, CeO_2 , Ce_2O_3	CeO _{1.99,} Ce ₂ O _{2.96}	1900-2150 1850-2050	-
7.	Kuznetzov& Rezukhina (1960)	Calorimetry	Heat capacity,	CeO ₂	608-1172	-
8.	Westrum & Beale Jr. (1961)	Adiabatic Calorimetry	Heat capacity,	CeO ₂	5-300	+
9.	Justice & Westrum (1969)	Cryogenic Calorimetry	Heat capacity	Ce ₂ O _{3.02}	5-350	+
10.	Basily & El- Sharkawy (1979)	Plane temperature wave method	Heat capacity	Ce ₂ O ₃	400-1000	+
11.	Ricken et al. (1984)	Calorimetry	Specific heat, $\Delta H_{trans.}$	CeO _{1.72} - CeO ₂	320-1200	-
12.	Kuznetzov, et al. (1960)	Bomb calorimetry	ΔH for Ce_2O_3	Ce ₂ O _{3.00}	298	+

13.	Baker & Holley (1968)	Oxygen Bomb Calorimetry	Heat of combustion Ce_2O_3	Ce ₂ O ₃	298.15	-
14.	Baker, Huber, Holley & Krikorian (1971)	Bomb calorimetry	Heat of formation $CeO_2, CeC_{1.5},$ CeC_2	CeO ₂	298.15	-
15.	Campserveux & Gerdanian (1974)	Micro Calorimetry	Partial molal enthalpy $\Delta H_{soln.}(O_2)$	CeO _{1.5} - CeO ₂	1353	+
16.	Panlener, Blementhal & Garnier(1975)	Thermo- gravimetry	$\Delta W/W$	CeO _{2-x}	1023-1773	+
17	Riess, Koerner & Noelting (1988)	Dilatometry	Thermal expansion coefficient	CeO _{1.79} – CeO ₂	320-1200	+

Calculated Ce–O System in Solid State from 60 to 67 mol. % O in comparison with experimental data.

H.J. Seifert, P. Nerikar, H.L. Lukas, Int. J. Mater. Res. 97 [6] (2006) 744-752.

Chemical potentials of oxygen for ceria as a function of composition and temperature.

Chemical potentials of oxygen for ceria as a function of composition and temperature.

Chemical potentials of oxygen for ceria as a function of composition and temperature.

Chemical potentials of oxygen for ceria as a function of composition and temperature.

Chemical potentials of oxygen in the two-phase areas.

Partial Enthalpies of Oxygen in CeO₂

Thermodynamics of High Temperature Materials Systems

Hans Jürgen Seifert

Outline

1. Introduction and motivation for thermodynamic calculations

- Computational thermodynamics
- CALPHAD approach (CALculation of PHAse Diagrams)
- Thermodynamic databases and software
- 2. Thermodynamic optimization of the Ce-O system
 - Thermodynamic modeling of solution phases
- 3. Precursor-derived Si-(B-)C-N ceramics
 - High temperature reactions of silicon carbide and silicon nitride ceramics
 - Crystallization and high temperature stability of Si-(B-)C-N ceramics

Precursor-derived Si-B-C-N Ceramics

- Produced by thermolysis (1323 K, Ar) of polymer precursors
- Amorphous, purely homogeneous inorganic materials
- NCP200: 40.1Si 23C 36.9N (at.%)
 - Starts to crystallize at 1700 K (N_2)
 - Thermal stability up to 1800 K $\left(N_{2}\right)$
- T2-1: 29.1Si 41.7C 19.4N 9.8B (at.%)
 - X-ray amorphous, nanocrystalline
 - Thermal stability up to 2300 K

Process for Precursor-derived Si-(B-)C-N Ceramics

Si-C binary subsystem

J. Gröbner, PhD thesis, 1994

Si-N binary subsystem

Isopleth from Carbon to Si₃N₄ in the Si-C-N System

Isothermal Section of the Ternary System Si-C-N

Isothermal Sections of the Ternary System Si-C-N

- \land Si₁N_{1.6}C_{1.33} (VT50, Polyvinysilazane, Hoechst AG, Frankfurt, Germany)
- $Si_1N_{0.6}C_{1.02}$ (NCP200, Polyhydridomethylsilazane, Nichimen Corp., Tokyo, Japan)

Calculated Phase Fraction Diagrams of Precursor Derived Ceramics

 $Si_1N_{1.6}C_{1.33}$ $Si_3N_4 + 3C = 3SiC + 2N_2$ **(VT50)** 80 Si_3N_4 1484°C 70 SiC
Rel. Phase-Amount [Mass-%]

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0</ 1757 40· Graphite Gas Graphite SiC 0 2000 2500 1500 3000 1000 Temperature [K]

Thermogravimetrical (TG) analysis of precursor-derived Si-C-N ceramics

Calculated Phase Fraction Diagram of Precursor Derived Ceramics

NCP200, Polyhydridomethylsilazane (Nichimen Corp., Tokyo, Japan)

Phase Fraction Diagram

Thermogravimetrical (TG) analysis of precursor-derived Si-C-N ceramics

Thermogravimetrical (TG) analysis of precursor-derived Si-B-C-N ceramics

Isothermal Section at 1500 K in the Ternary System Si-B-C

Calculated Potential Phase Diagram

Calculated Potential Phase Diagram

Carbon activity - temperature diagram

Isopleth from B to $Si_1C_{1.6}N_{1.33}$ (VT50) in the Si-B-C-N System

Isopleth from $B_{0.1}C_{0.65}Si_{0.25}$ to $B_{0.1}N_{0.65}Si_{0.25}$ in the Si-B-C-N System (at 10 mol-% B and 25 mol-% Si)

→ X (Si)

Si-B-C-N concentration tetrahedron with indicated plane at a constant B content of 25 at.%

Isothermal Section at 10 mol-% B in the Si-B-C-N System

Isothermal Sections at 10 mol-% B in the Si-B-C-N System

System Si-B-C-N - Metastable phase separation -

