Hydrogen and its Storage for Mobility, a Challenge, not only for Materials Science and Technology

Louis Schlapbach¹, Andreas Züttel^{1,2}

¹ Empa – Materials Science and Technology, Switzerland

² Physics Dept., University of Fribourg, Switzerland

louis.schlapbach@empa.ch

1

Supported by Swiss DOE and EU-ProjectS $_{\mbox{\scriptsize Empa, ,}}$

"The primal element of all things is water all things come from water and all things return to water." Thales of Miletus (circa 625 – 547 BC.)

WORLD ENERGY CONSUMPTION

Materials Science & Technology

4

WORLD CLIMATE CHANGE

Spektrum der Wissenschaft Mai 2001, pp. 90-91

5

Energy for Mobility (fuel and its storage)

globalisation: mobility of persons transport of goods emissions, greenhouse gases, CO₂ global warming, more breathing problems

We have a problem!

Statistics related to energy consumption

7

WORLD ENERGY ECONOMY

Energy carrier	Demand	Reserve
		[years]
Fossile		
Crude Oil	32.7 %	41
Natural Gas	19.5 %	63
Coal	21.4 %	218
Renewable		
Hydropower	6.7 %	
Biomass	11.6 %	
Others	2.0 %	
Nuclear	6.1 %	100

Average Power Consumption per Person **kW**

Materials Science & Technology

8

International comparison of energy consumption 1998

En Source: International Energy Agency 2001

Why hydrogen? Why not already today?

Energy is linked to forces

Natural forces	Ratio	Example	Store technique
Gravitation	10 ⁰	Mechanical	Hydropower
Weak Nuclear	10 ³³		
Electromagnetic	c 10 ³⁸	Chemical	Hydrogen synthetic fuel Electric battery
Strong Nuclear	10 ⁴⁰	Nuclear fission, fusion	Nuclear fuel

Hydrogen

EMPA

Empa,,

Properties of hydrogen

non toxic, C-free gas, unlimited available as H_2O simplest element of periodic table

best ratio of valence electrons to nucleons: 1e⁻ per 1 proton, high binding energy 13.5 eV

isotopes D deuterium, T tritium for nuclear fission and fusion reaction

molecular gas H_2 , liquid T< 21 K, solid T< 14K

transforms @ high pressure from molecular insulating solid into atomic metallic solid

high temperature superconductor?

Use of Hydrogen

Store hydrogen, convert it CO₂ free into heat, electric or mechanical power

 $H_2 + \frac{1}{2}O_2$ $H_2 O + heat$ (combustion) $H_2 + \frac{1}{2}O_2$ $H_2 O + electricity$ (fuel cell)

PROPERTIES OF FUELS

Properties		Hydrogen (H ₂)	Methane (CH_4)	Gasoline (-CH ₂ -)
		-		_
lower heating value	[kWh ⋅kg ⁻¹]	33.33	13.9	12.4
self ignition temperature	[°C]	585	540	228-501
flame temperature	[°C]	2045	1875	2200
ignition limits in air	[Vol%]	4 - 75	5.3 - 15	1.0 - 7.6
minimal ignition energy	[mWs]	0.02	0.29	0.24
flame propagation in air	$[\mathbf{m} \cdot \mathbf{s}^{-1}]$	2.65	0.4	0.4
detonation limits	[Vol%]	13 - 65	6.3 - 13.5	1.1 - 3.3
detonation velocity	$[\text{km} \cdot \text{s}^{-1}]$	1.48 - 2.15	1.39 - 1.64	1.4 - 1.7
explosion energy	$[\text{kg TNT} \cdot \text{m}^{-3}]$	2.02	7.03	44.22
diffusion coefficient in a	$ir[cm^2 \cdot s^{-1}]$	0.61	0.16	0.05

Materials Science & Technology 15

Andreas Züttel, University of Fribourg, 8/29/2006

Is Hydrogen a Safe Energy Carrier ?

LZ 129 "Hindenburg"

New York / Lakehurst, May 6th 1937, 6 pm

Accident:

While the airship was landing she has got on fire about 80 meters above ground level and crashed. Fatalities:

13 of 36 passengers,

22 of 60 crew members

1 member of 228 ground staff holding the ship.

Materials Science & Technology 18

Cause of fire

New investigation: The inflammable skin of the Hindenburg was ignited by an electric discharge arc between the electrostatic charged skin and the grounded metallic frame.

Ref.: Addison Bain, Wm. D. Van Vorst, "The Hindenburg tragedy revisited: the fatal flaw found", Int. Journal of Hydrogen Energy 24 (1999), pp. 399-403

Materials Science & Technology 19

FUEL LEAK SIMULATION

Before ignition t = 0 s

Hydrogen powered vehicle on the left. Gasoline powered vehicle on the right.

Ignition t = 3 s

Ignition of both fuels occur. Hydrogen flow rate 2100 SCFM (0.18 m³/min.)

Gasoline flow rate 680 cm³/min.

Ref.: Michael R. Swain, University of Miami, Coral Cables, FL 33124, USA

FUEL LEAK SIMULATION

t = 60 s

21

Hydrogen flow is subsiding, view of gasoline vehicle begins to enlarge

t = 90 s

Hydrogen flow almost finished. View of gasoline powered vehicle has been expanded to nearly full screen.

Ref.: Michael R. Swain, University of Miami, Coral Cables, FL 33124, USA

Why do we use hydrocarbons instead of hydrogen?

hydrogen is an ideal gas @ ambient conditions 1 mol H₂ = 2g = 22,4I = 284 kJ = 80 Wh

compacting by 1000 needed

PRIMITIVE PHASEDIAGRAM OF HYDROGEN

Ref:: W. B. Leung, N. H. March and H. Motz, Physics Letters 56A (6) (1976), pp. 425-426

Figure 5. Hydrogen passes through several transformations as the pressure is increased. In the fluid phase (*a*) H_2 molecules are dispersed randomly and at low density. The solid phase formed at 54 kilobars (*b*) has a hexagonal close-packed structure; further increases in pressure up to well beyond a megabar drive the molecules closer together but do not alter the fundamental structure (*c*). In this phase the molecules remain randomly oriented: Viewed classically, the axis defined by the bond between hydrogen atoms can point in any direction, and indeed the molecules are continually tumbling. With further pressure increases hydrogen may enter a phase with orientational order; four candidate structures are shown (*d*-*g*), although none of them has been confirmed experimentally at very high pressures. The ultimate fate of hydrogen, as the pressure continues to rise, must be to form an atomic metal (*h*), where the H₂ molecules have ceased to exist.

Ho-kwang Mao and Russell J. Hemley

234 American Scientist, Volume 80

1992 May-June 239

Hydrogen storage

Storage Media Volume Mass Pressure Temp.

VOLUME OF HYDROGEN STORAGE MEDIA

4 kg hydrogen = 560 MJ_{therm.}

Mg_2FeH_6 LaNi₅H₆ H₂ (liquid) H₂ (200 bar)

 $31 \text{ gasoline} / 100 \text{ km} = 9 \text{ kWh}_{\text{mech.}} / 100 \text{ km} = 32 \text{ MJ}_{\text{mech...}} / 100 \text{ km}$

Ref.: L. Schlapbach & A. Züttel, NATURE, 414, 2001, 353-358

LIQUID HYDROGEN AS FUEL FOR CARS

BMW 745i refilled with liquid hydrogen

Liquid hydrogen tank

Materials Science & Technology 27

High pressure vessels

Hydrogen condensation in and on nanotubes

Materials Science & Technology 30

Solution and metal hydride formation

pressure composition isotherms thermodynamics kinetics, diffusion electronic structure

31

Hydrogen absorbtion mechanism

H₂ gas phase

alkaline electrolyte

- 1) Physisorption of H₂ molecules
- 2) Dissociation (activation barrier)
- 3) Chemisorption of H-atoms
- 4) Diffusion of H-atoms
- 5) Intercalation

- 1) Physisorption of H₂O molecules
- 2) Electron transfer (desorption of OH-)
- 3) Chemisorption of H-atoms
- 4) Diffusion of H-atoms
- 5) Intercalation

Materials Science & Technology 32

Phase Diagram of Metal Hydrides (LaNi5)

$$\mathbf{R} \cdot \mathbf{T} \cdot \ln \left(\frac{\mathbf{p}}{\mathbf{p}_0}\right) = \Delta \mathbf{H} - \mathbf{T} \cdot \Delta \mathbf{S}$$

Materials Science & Technology 34

Slater-Koster density of states for Pd And total and partial wave Analysis of the DOS of PdH (D. Papaconstantopoulos)

35

Intermetallic compounds for reversible hydride formation

hexagonal cubic AB5, LaNi_{5,} AB, FeTi A2B, Mg2Ni AB2, Zr2Ni, Mn2Ni

AB5, AB, AB2 type hydrides: Reversible cycling 10 000 times Safe room temperature operation Compact, but very heavy (1.5 -3 w% H) and expensive

Other materials to adsorbe or intercalate hydrogen

layered structures

hexagonal	AI B_2
trigonal	Ca Si ₂
orthogonal	Ru B ₂
hexagonal	Re B ₂
hexagonal	WB_2

high surface area nanostructures

Li Al O₂

high (open) porosity nanostructures

zeolites

Some metal hydrides discovered and/or characterized at the Uni Geneva (Klaus Yvon)

compound	space group	structure	H de (wt %)	nsity (gH/ler)	T _{des} (1 bar)
Complex transit	ion metal hydride	es**)			
BaReH ₉	P6 ₃ /mmc	[ReH ₉]²⁻ttp	2.7	134	<100°C
Mg ₂ FeH ₆	Fm-3m	[FeH ₆] ^{4 -} oct	5.5	150	320°C
$Ca_4Mg_4Fe_3H_{22}$	P-43m	[FeH ₆] ^{4 -} oct	5.0	122	395°C
Intermetallic hyd	drides**)				
Zr ₂ CoH ₅	P4/ncc	new type	2.0	123	>400°C
$Zr_6FeAI_2H_{10}$	P-62c	filled Fe ₂ P	1.5	80	>400°C
Saline hydrides**)					
Ca ₄ Mg ₃ H ₁₄	P-62m	new type	5.7	98	>400°C
Ba ₆ Mg ₇ H ₂₆	C2/m	Ba ₆ Zn ₇ H ₂₆	2.6	82	>400°C

MOLECULAR CONTAINERS Developing suitable storage media for hydrogen is critical to capitalizing on the gas's potential benefits as an energy carrier. Among other candidates, this metal-organic framework compound—MOF-177, composed of zinc clusters (blue) and 1,3,5-benzenetribenzoate units—is being studied for gas uptake because of its large pore volume (yellow spheres).

FILLING UP WITH HYDROGEN

Materials Science & Technology

Complex hydrides Hydrogen generation by the hydrolysis of alkaline borohydrides					
MH complex	Mol. mass	H-content	H-generated (mass%)		
		(111855%)	(Hydrofysis)		
LiAIH ₄	37.93	10.53	10.82		
LiBH ₄	17.85	22.41	14.86		
KAIH ₄	70.08	5.71	7.54		
KBH ₄	53.91	7.42	8.90		
NaAlH ₄	53.97	7.41	8.89		
NaBH ₄	37.70	10.61	10.85		

NEUTRON DIFFRACTION OF LIBD₄

A. Züttel et al., J. of Alloys and Compounds 356-357 (2003), 515-520

STRUCTURE OF LiBH₄ AT 408K (135°C)

hexagonal symmetry space group: $P6_3mc$ (#186) a = 4.27631(5) Å c = 6.94844(8) Å Vol: 110.041 Å³, Z = 2

Atom	Х	У	Z
Li	0.3333	0.6666	0.0000
В	0.3333	0.6666	0.553
H ₁	0.3333	0.6666	0.370
H ₂	0.172	0.344	0.624

J-Ph. Soulié, G. Renaudin, R. Cerny, K. Yvon, J. Alloys and Comp. 346 (2002), 200

Materials Science & Technology 43

Empa,,

THERMAL H₂ DESORPTION FROM LIBH₄ into vacuum

REVERSIBILITY OF LIBH₄

Materials Science & Technology 46

HYDROGEN DENSITY

Future Developments

- H storage by light weight metal alloys
- Kinetics: nanosized particles (short diffusion path) however: high thermal conductivity
- Thermodynamics: include side reactions which balance Δ H
- Catalysts to lower reaction temperature (3d, 4d metals with high DOS@EF
- Alkaline and alkaline earth metals and their compounds (borides, alanates,...)
- Adsorption on other nanoporous structures

Accept and use more efficient energy technologies

Mehr Intelligenz, weniger Verbrauch.

HY-LIGHT ®

A purpose designed vehicle

- Curb Weight: 850 kg
- 4 seats + trunk
- Acceleration 0-100 km/h: < 12 Sek.</p>
- Range (@ 80 km/h const.): 400 km
- Consumption: < 25 kWh/100km compressed H₂
- Electrical damping and steering
- Advanced wheel motors 30 kW per wheel
- Fuel storage integrated in the vehicle structure
- ■Fuel cell stack: 30 kW, based on H₂ and O₂
- Supercaps: 32-45 kW @ 17 s
- The vehicle participated at the Challange Bibendum 2004 in Shanghai

A collaboration between Michelin and PSI:

PSI contributed the fuel cell system and the supercap-module

Mobile Future Hydrogen

F600 HY Genius

(Mercedes-Benz Research Vehicle) Zero emission compact class car Fuel cell–Li battery–electric motor hybrid car

Hydrogen Reservoir: 4 kg 700 bar

Fuel Cell: with air turbocharger

Li-ion Battery: 30/55 kW

Electric Motor: 60/85 kW const/peak Torque 250-350 Nm

Range, Consumption: 400 km, eq. 2.9 l diesel/100 km

Materials Science & Technology 52

Hydrogen interactions with materials

Metal semiconductor transition of Rare Earth hydrides

Valence fluctuation in Yb hydride

Hydrogen induced defects on graphitic carbon

VB spectra of rare earth hydrides, metal-semiconductor transition

54

VB spectra of Ce hydride at low temperature

Individual hydrogen defects on graphite

Localized structural changes induced by the interaction with hydrogen species lead to long-ranged (~5 nm) electronic effects

Hydrogen chemisorption on sp²-bonded carbon

Local change of the hybridization from sp² to sp³

EMPA

Electronic structure of SWNT

Armchair (n,n) SWNT are always (in principle) metallic, because the band going through the Γ-point (origin of the k-space) always goes through a Fermi-point !

EMPA

Local modification of the electronic properties of CNT

Formation of symmetric states in the gap of semiconducting SWNT

Local modification of the electronic properties of CNT by hydrogen induced defects: Band Gap Engineering

LT-STM @ 5 K

Sharp (FWHM < 30 meV) twin state in the bandgap of a semiconducting tube. May be active as radiative recombination centers => Point photon source.

What is so interesting with defects and SWNT?

(single walled carbon nanotube SWNT)

2

4

0

Again: Is working with hydrogen safe?

WISHR **JEAN-PIERRE POIRIER** Préface de ALAIN PEYREFITTE de l'Académie française

Chronologie des travaux de physique et de chimie de Lavoisier

- 1765: Mémoire «Sur l'analyse du gypse».
- 1772: Expériences sur la calcination; pli cacheté à l'Académie.
- 1773: Calcination du plomb et de l'étain dans des cornues.
- 1774: Opuscules physiques et chimiques.
- 1777: Mémoire «Sur la respiration des animaux»; mémoire «Sur la combustion en général».
- 1780: Expériences sur les acides.
- 1781: Travaux sur la chaleur (en coll. avec Laplace).
- •1783: Mémoire « Sur la composition de l'eau »; « Réflexion sur le phlogistique ».
 - 1785: Grande expérience de synthèse et analyse de l'eau.
 - 1787: Mémoire «Sur la nécessité de réformer et de perfectionner la nomenclature chimique».
- 1789: Traité élémentaire de chimie; premier volume des Annales de chimie. 1792: Travaux pour le système métrique.

Mittelalterlicher Stadtplan von Paris.

Remaining Challenges e.g. Mobility

Goal: Safe, comfortable and fast transport of 1 or a few persons

2.5 ton vehicle as midsize car (US DOE)?

Introduce *mass ratio "brain to car"* as a quality criteria? Or "mass CO2/km"

Incremental increase of storage capacity of 2.5 ton cars or new concepts for efficient cars?

F600 HY Genius

(Mercedes-Benz Research Vehicle) Zero emission compact class car Fuel cell–Li battery–electric motor hybrid car

Hydrogen Reservoir: 4 kg 700 bar

Fuel Cell: with air turbocharger

Li-ion Battery: 30/55 kW

Electric Motor: 60/85 kW const/peak Torque 250-350 Nm

Range, Consumption: 400 km, eq. 2.9 l diesel/100 km

Materials Science & Technology 70

Availability of energy

is a product of nature, science, technology, culture not of economics, nor politics or war

Ethical behaviour respects energy and its efficient use

