

Hydrogen Program

Materials Issues in Hydrogen R&D: Recent Developments in the DOE's Portfolio

ICMR Symposium on Materials Issues in Hydrogen Production & Storage

University of California, Santa Barbara August 22, 2006

C. Read, G. Ordaz, G. Thomas¹, and S. Satyapal

Office of Hydrogen, Fuel Cells and Infrastructure Technologies Office of Energy Efficiency and Renewable Energy

1. Sandia National Laboratory, retired, on assignment to DOE

Program Goal/Challenges

Goal: Technology readiness to enable fuel cell vehicles & hydrogen fuel from diverse domestic resources

Challenges:

Critical Path Technology

- Hydrogen Storage (target: >300-mile range)
- → Fuel Cell Cost and Durability (targets: \$30 per kW, 5000 hours)
- Hydrogen Cost (target: \$2.00 3.00 per gallon gasoline equivalent*)
 Economic/Institutional
- Codes and Standards (Safety, and Global Competitiveness)
- Hydrogen Delivery (Investment for new Distribution Infrastructure)
- Education (safety and code officials, local communities, state and local governments, students)

*One kilogram of hydrogen contains nearly the same energy as a gallon of gasoline.

Producing Hydrogen

- Goal: Hydrogen produced domestically, reducing our dependence on foreign energy sources and providing clean, carbon-free fuel.
- Production Pathways: Hydrogen can be produced from renewable, nuclear, and fossil energy resources using a variety of process technologies, including:
- Renewable electrolysis (using wind, solar, or geothermal energy)
- Biomass and renewable liquids
- High temperature thermochemical
 - ✓ Nuclear energy
 - ✓ High temperature solar
- Biological and photoelectrochemical technologies
- Coal (with carbon sequestration)
- Natural gas

Quick Fact:

The U.S. hydrogen industry currently produces ~9 million tons of hydrogen a year – that's enough to power about 34 million vehicles.

Distributed Hydrogen Production Status vs Goal

NREL is focusing on single material applications that will split water using sunlight as the only energy input.

Goal: Stable III-V nitride material for tandem H₂O splitting

Synthesize the semiconductor structure with the necessary properties

- ✓ GaPN-NREL (high efficiency, stability)
- ✓ CuInGa(Se,S)2 UNAM (Mexico), NREL (Low cost)
- ✓ Silicon Nitride –NREL (protective coating and new material)

BES Priority Research Areas in Hydrogen Production

Fossil Fuel Reforming

Catalysis; membranes; theory and modeling; nanoscience

Ni surface-alloyed with Au to reduce carbon poisoning

Bio- and Bio-inspired H₂ Production

Biological enzyme catalysis; nanoassemblies; bio-inspired materials and processes

Synthetic catalysts for water oxidation and hydrogen activation

Solar Photoelectrochemistry/Photocatalysis

Understanding physical mechanisms; novel materials; theory and modeling; stability of materials

Dye-Sensitized solar cells

Source: BES Hydrogen Workshop Report

Nuclear and Solar Thermal Hydrogen

Thermodynamic data and modeling; novel materials; membranes and catalysts

Hydrogen Storage: The "Grand Challenge"

On-board hydrogen storage to meet all performance (wt, vol, kinetics, etc.), safety and cost requirements and enable a more than 300 mile driving range.

Targets	2010	2015	
System Gravimetric Capacity	6 wt.%	9 wt.%	
(net)= "specific energy"	(7.2 MJ/kg)	(10.8 MJ/kg)	
	(2.0 kWh/kg)	(3.0 kWh/kg)	
System Volumetric Capacity (net)= "energy density"	1.5 kWh/L	2.7 kWh/L	
	(5.4 MJ/L)	(9.7 MJ/L)	
	(45 g/L)	(81 g/L)	
Storage system cost	\$4/kWh	\$2/kWh	
	(~\$133/kg H ₂)	(\$67/kg H ₂)	

More targets and explanations at www.eere.energy.gov/hydrogenandfuelcells/

Targets are for Storage System

Today's gasoline tank system:

System includes material, tank, and balance of plant- e.g. insulation, sensors, regulators, first charge, any byproducts/reactants, etc.

6.5

Material capacities must be higher!

Real World Composite Data (58 vehicles) Improved hydrogen storage technologies that can be packaged in a vehicle are necessary to meet range targets

Current Status No storage technology meets 2010 or 2015 targets

Costs exclude regeneration/processing. Complex hydride system data projected. Data points include analysis results.

Many other requirements requires optimization and possibly trade-offs.

Strategy & Results Broad Portfolio Focused on Materials Technologies

Challenges are technology specific: Pros and Cons for each Tanks (to 10,000 psi), Chemical hydrides (CH), Metal Hydrides (MH), Carbon/Sorbents (S)

	Key 2010 Targets:	Tanks	СН	МН	S	
	Volume (1.5 kWh/L)	Н	М	М	M/H	
	Weight (2.0 kWh/kg)	М	М	M/H	М	
	Cost (\$4/kWh)	M/H	M/H*	M/H	M/H	
	Refueling Time (3 min, for 5 kg)	L	L	M/H	М	
Thermal Mgmt: Key Issues for MH	Discharge Kinetics (0.02 g/s/kW)	L	М	М	М	
(CH, C)	Durability (1000 cycles)	L	М	М	М	
H = High (Significant challenge) M/H = Medium/High M = Medium L = Low (minimal o						

For CH, MH and S- assessment based on potential to meet targets, though systems not yet demonstrated in most cases. *For CH: Storage system may meet cost but fuel cost of \$2-\$3/kg is challenge for CH regeneration.

An example trade-off for on-board reversible methods is among ΔH , pressure and re-fill time.

Pressure at 80 C vs. Formation Energy

lower ΔH_{f} reduces cooling power needs for refueling: e.g., for $\Delta H_{f} \sim 30 \text{ kJ/molH}_{2}$ need 800 kW for 8 kg H₂ and 5 minute fill time

higher ⊿H_f results in lower equilibrium pressure:

 $\Delta H_{f} \sim 17 \text{ kJ/molH}_{2} \qquad 45 \text{ kJ/molH}_{2}$ $P_{eq} \sim 350 \text{ bar} \qquad 5 \text{ bar}$

Examples of other important targets to keep in mind....

Discharge Kinetics 0.02 g/s/kW

For 100 kW fuel cell, need > 2 g/s flow rate

Desorption rate must be available over the entire hydrogen content range of the material

Strategy and Program Plans

- Centers of Excellence (\$5-6M/yr) plus independent projects, launched at \$150 M over 5 years (plan-subject to appropriations)
- ~ 40 universities, 15 companies, 10 federal labs (including 17 new BES awards)
- Diverse portfolio addresses NAS recommendations

- Focus is materials-based technologies
 - Systematic approach
 - Robust theory/simulation
 and rapid screening
 - Tailor properties

Yakobson, Rice U.

"...DOE should continue to elicit new concepts and ideas, because success in overcoming the major stumbling block of on-board storage is critical for the future of transportation use of fuel cells." (NRC Report, p.44)

Results: Examples of Progress (2005-2006) New materials with higher capacities being found

Material Capacities for Hydrogen Storage

Li Mg Amides Metal/carbon hybrids, MetCars ~5.5wt%, ~2.8 kWh/L (>200 C) Alane Phenanthrolene/ organic liquids Metal/carbon hybrids, MetCars ~7-10 wt%, ~5 kWh/L (<150 C) Li borohydrides Phenanthrolene/ organic liquids Bridged catalysts IRMOF-8 >9 wt%, ~3.5 kWh/l (~350 C) Ammonia Borane/Scaffolds Bridged catalysts IRMOF-8 ~5-7wt%, ~2-3 kWh/L (250 C) Ammonia Borane/Scaffolds ~1.8 wt.%, ~0.3 kWh/L (room T) LiMgAlane, M-B-N-H ~ 7-8.8 wt%, > 1.3 kWh/L (~150-340 C) ~6 wt%, ~2-4 kWh/L (<100 C) Metal-Organic Frameworks IRMOF-177 ~7 wt%, ~1 kWh/L (77K)	Advanced Metal Hydrides	Chemical H ₂ Storage	Carbon/ Sorbents & New Materials
	~5.5wt%, ~2.8 kWh/L (>200 C) Alane ~7-10 wt%, ~5 kWh/L (<150 C) Li borohydrides >9 wt%, ~3.5 kWh/I (~350 C) Destabilized Binary hydrides ~5-7wt%, ~2-3 kWh/L (250 C) LiMgAlane, M-B-N-H ~ 7-8.8 wt%, > 1.3 kWh/L	organic liquids ~7 wt%,~1.8 kWh/L (>150 C) Ammonia Borane/Scaffolds ~6 wt%,~2-4 kWh/L	MetCars 6 to > 8wt%*, ~1.3* kWh/l (*theory) Bridged catalysts IRMOF-8 ~1.8 wt.%,~0.3 kWh/L (room T) Metal-Organic Frameworks IRMOF-177 ~7 wt%, ~1 kWh/L

XY + n[·]H₂

endothermic

XY + n H₂ exothermic

XYH₂₀

Note: Material capacities only. No balance of plant. Estimates for volumetric capacities.

We are excited by these results but there are still issues... Next steps: Operability (Temperature, pressure, kinetics, etc.)

Heat of formation of reversible hydride impacts both operation and refueling

Results: MH researchers are finding new materials with favorable thermodynamics but have kinetic limitations.

- TGA for H₂ desorption from LiBH₄ incorporated into nanoporous scaffolds & nonporous graphite control. Lower T_d in carbon aerogels and activated carbon compared to graphite control
- Improved cycling capacity for LiBH₄ in scaffold structures. Capacity determined from dehydrogenation after hydrogenation (100 bar H₂, 400°C, 2 hr).

MH researchers are also combining advanced characterization with theoretical modeling to predict promising structures.

Outcome: Provides guidance for new alloys with improved properties

Carnegie Mellon

Adsorbent materials generally have too low a binding energy for hydrogen.

Results: Carbon and Sorbents are looking at increasing capacity and binding energy.

Carbon Center & New Materials:

- >7 wt.% at 77K shown on MOFs (> 30 g/L)
- Several cycles reversibility shown
- Four-fold enhancement in H₂ storage via "spillover"

Results: The Carbon CoE is also using theory to design tailored nanostructures.

Yakobson, Ding, Lin Rice University Carbon Center

CNT "Carpet" Tour, et al, Rice U.

> NREL-Carbon Center Potential for 6.1-7.7 wt%

MetCars Y. Zhao, A.C. Dillon, Y.-H. Kim, M.J.

Yakobson, et al

Heben, S.B. Zhang, in prep Theoretical modeling conducted to predict optimum structures and storage capacities

Thermodynamics of chemical (non-reversible) hydrides must also be tailored.

Results: Chemical carrier research is addressing both on-board kinetics and regeneration chemistry.

- Organic liquids: >7 wt.%, 69 g/L
 - 1.5 wt% more than FY05
 - > 100 catalysts screened
 - > Dehydrogenation with 10x less Pt in catalysts

- NH₃BH₃ in mesoporous scaffolds:
 - >6 wt% material capacity
 - H₂ release at < 80 C
 - Reduced borazine formation

Autrey, Gutowski, et al, PNNL Chemical CoE

U. of Washington, Chemical CoE

Original catalyst development- Jensen, et al (U HI)

DOE Hydrogen Storage Budget

DOE- EERE FY2007 Budget Request = \$34.6M FY2006 Funding = \$26.6M

DOE- Office of Science FY2007 Budget Request = \$50.0M* FY2006 Funding = \$32.5M*

* For Basic Science within the Hydrogen Fuel Initiative, including hydrogen storage, membranes, catalysts, etc.

Planned funding for Basic Science in Hydrogen Storage in FY06: \$7.13M

EERE Hydrogen Production and Delivery R&D Budget

• Difference between the total 04-07 request and available funds is \$48.5M

* Budget numbers do not include earmarks

Summary: We need you to solve the Storage "Grand Challenge"!

- New Materials & Concepts are critical- Stress volumetric capacity, kinetics, etc. (not just wt. %!)
- Basic science is essential to develop fundamental understanding & complements applied research & development
- Engineering issues need to be considered
 - System issues, reactor design, thermal mgmt, safety, refueling, testing, etc
- Examples of Essential Capabilities:
 - Modeling & Analysis
 - Combinatorial/high throughput methods
 - Material properties measurements
 - Standardized & accurate testing

2007 Annual DOE Hydrogen Program Merit Review and Peer Evaluation Meeting Arlington, VA May 14-18, 2007

www.hydrogen.energy.gov

For More Information

EE Hydrogen Storage

Sunita Satyapal, Team Leader Overall Storage/ FreedomCAR Tech Team/International 202-586-2336 sunita.satyapal@ee.doe.gov

Carole Read

Metal Hydrides, Metal Hydride Center of Excellence 202-586-3152 carole.read@ee.doe.gov

Grace Ordaz

Chemical Hydrides, Chemical Hydrogen Storage Center of Excellence 202-586-8350 grace.ordaz@ee.doe.gov

George Thomas*

On Assignment to DOE *retired. Sandia 202-586-8058 george.thomas@ee.doe.gov

New Hire

Carbon/Sorbents, Carbon Center of Excellence

For More Information

EE Hydrogen Production

Patrick Davis, Team Leader 202-586-8061 patrick.davis@ee.doe.gov

Arlene Anderson

202-586-3818 arlene.anderson@ee.doe.gov

Pete Devlin

202-586-3152 peter.devlin@ee.doe.gov Roxanne Garland

202-586-7260 roxanne.garland@ee.doe.gov

Mark Paster

202-586-2821 mark.paster@ee.doe.gov

Office of Science

Harriet Kung harriet.kung@science.doe.gov)

Tim Fitzsimmons

(tim.fitzsimmons@science.doe.gov)

Relevant Web Sites for DOE-SC-BES Programs:

Core Research Program

http://www.science.doe.gov/bes (Office of Basic Energy Sciences) http://www.science.doe.gov/bes/dms/DMSE.htm (Division of Materials Sciences & Engineering) http://www.science.doe.gov/grants/ (Sponsored research details) http://www.science.doe.gov/bes/dms/Submit_Proposals/submit_proposals.htm http://www.grants.gov/

http://www.science.doe.gov/bes/dms/Submit_Proposals/1pager.pdf (1 page information flyer)

Major Research Facilities

http://www.sc.doe.gov/bes/BESfacilities.htm http://www.science.doe.gov/bes/User_Facilities/dsuf/DSUF.htm

SBIR/STTR http://sbir.er.doe.gov/sbir