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First principles investigations
Microscopics: atomic and electronic arrangements



Multiferroics: crystal distortions/phonons

• Dynamical and static (symmetry lowering distortions)
• Atoms move – couples to magnetic ordering
Phonons freeze in at structural phase transitions—modify 

magnetic order
Magnetic phase transitions lead to anomalies in phonon 

frequencies
Coupling includes strain and elastic constants
Spin-phonon coupling, magnetodielectric response..
[electromagnons]

• Crystallography – where the atoms are
• Symmetry analysis of phonon modes
• Modulation of exchange interactions by displacements 
(includes both striction and DM)



Overview of the two lectures

• Space groups and crystal structures—
especially important for complex structures!
• Symmetry-breaking distortions—phonons, strain
• Classification of low-symmetry phases by mode 

content
• The effect of magnetism on symmetry analysis
• Magnetically-induced phonon anisotropy
• Modulation of exchange by distortions

• Examples: rocksalt MnO
• Perovskites BaTiO3, double perovskites, BiFeO3, 

FeTiO3

• hexagonal YMnO3



Crystallography: specifying crystal structures

• Textbook description: lattice + basis
• A more useful description:

space group + occupied Wyckoff positions
Most compact (in conjunction with Int’l Tables)
Symmetries and free structural parameters evident
(almost) unique – origin, “setting” of axes

Proper knowledge and careful application of 
crystallographic analysis will ensure physically correct 
results and allow you to avoid embarrassing mistakes!



Example: cubic perovskite structure

• Simple cubic lattice a0x, a0y, a0z
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Example: cubic perovskite structure

• Simple cubic lattice a0x, a0y, a0z
• Pb at (0,0,0) 
• Ti at (1/2,1/2,1/2) 
• O at (1/2,1/2,0)
• O at (0,1/2,1/2)
• O at (1/2,0,1/2)

Note that basis is not unique (can add lattice vector to any 
position(s), can put origin at Ti or, in fact, anywhere in cell)

does not have full symmetry of the crystal (and symmetries 
not obvious in this description)



Example: cubic perovskite structure

Crystallographic description—generally given in the literature

• Space group Pm3barm (#221) (out of 230 space groups total)
• which Wyckoff positions are occupied by which atoms
Pb 1a  0,0,0 Pb 1b  ½,½,½
Ti  1b  ½,½,½ Ti  1a  0,0,0
O  3c   0,½,½ ½,0,½ ½,½,0 O  3d   ½,0,0   0,½,0   0,0,½
Lattice parameter a0

No additional free structural parameters for this symmetry



this is the symmetry group of the cube



These are the highest symmetry (and lowest multiplicity) Wyckoff positions in
this space group.
They appear in the description of the cubic perovskite structure.



Example: cubic perovskite structure

Crystallographic description—generally given in the literature

Space group Pm3barm (#221) (out of 230 space groups total)
Pb 1a  0,0,0 Pb 1b  ½,½,½
Ti  1b  ½,½,½ Ti  1a  0,0,0
O  3c   0,½,½ ½,0,½ ½,½,0 O  3d   ½,0,0   0,½,0   0,0,½
Lattice parameter a0

No additional free structural parameters for this symmetry

Symmetries are manifest
Point group: governs macroscopic properties (allowed couplings)
Site symmetry groups from the table
Can easily reconstruct lattice+basis description 
(eg for input into first-principles program)



What’s the space group of lattice+basis?

• “by hand:” identify the symmetries
for a given origin—point symmetries +
additional symmetries with nonprimitive translation?
[doublecheck lattice type—may be lower symmetry than initial 

guess; for example, a primitive tetragonal lattice with c=a 
could initially be misidentified as simple cubic]

• A useful computational tool: ISOTROPY
• http://stokes.byu.edu/isotropy.html
• FINDSYM: Identify the space group of a crystal, given the 

positions of the atoms in a unit cell.

Note: many first-principles packages include space-group 
identification, but less reliable 

http://stokes.byu.edu/isotropy.html
http://stokes.byu.edu/findsym.html


Example: tetragonal FE phase of PbTiO3

• Primitive tetragonal lattice a x, a y, c z (P4mm #99)

Pb 1a  0,0,z Pb 1b  ½,½,z 
Ti 1b  ½,½,z Ti  1a  0,0,z
O 1b  ½,½,z O  1a  0,0,z
O 2c  ½,0,z 0,½,z O  2c  ½,0,z 0,½,z 
Two lattice parameters a, c
Three nontrivial additional parameters for this symmetry 

a0

A

Point symmetries are
those of this object



Creating a crystal structure

• Pick a space group (Example: P4mm #99)
• Occupy selected Wyckoff positions 

with chosen elements



Creating a crystal structure

• Pick a space group
• Occupy selected Wyckoff positions with chosen 

elements

• NOTE:      avoid a “common” mistake –
your crystal may have higher symmetry than the 

starting space group! 



• Example #1:
1a (0,0,0)
Monoatomic primitive tetragonal Bravais lattice P4/mmm

• Example #2
2c (0,1/2,z) (1/2,0,z)
Monoatomic primitive tetragonal BL P4/mmm
ADDITIONAL TRANSLATIONAL SYMMETRIES!

More symmetry than you thought…



• Interatomic force constants: energy E({uiτα})
-(d2E/duiταdujκβ)uiτα = force on atom jκ in the β direction 

produced by displacement of atom iτ in α direction
(j labels unit cell, κ labels atom in basis)

Crystal symmetries lead to 
equalities and zeros for this matrix

Symmetry-breaking crystal distortions



Symmetry-breaking crystal distortions

Interatomic force constant matrix has full symmetry of 
the crystal space group

Transform to basis of symmetrized displacement 
patterns (these transform according to irreducible 
representations of the space group) →

The force constant matrix (and dynamical matrix) are 
block diagonal with nonzero elements only between 
patterns with same transformation under crystal 
symmetry operations (that belong to same row of 
same irrep)

Displacement patterns for some irreps may even be 
uniquely determined by symmetry!



Symmetry breaking crystal distortions

• Labels for space group irreps: wavevector Q in 
irreducible Brillouin zone + irrep of little group of Q

X

R

M

Γ

Cubic perovskite example: simple cubic

Γ: (0,0,0)
R: π/a(1,1,1)
X: π/a(1,0,0)
M: π/a(1,1,0)
where a is the lattice constant
of the simple cubic lattice



Cubic perovskite:
symmetrized displacement patterns

� Γ: Q=0 (uniform from cell to cell)

x

y

z

3-dimensional irreducible representation (irrep) Γ15
(this is the vector representation)
Three rows: x, y, z



Cubic perovskite: symmetrized displacements
� Γ: Q=0 (uniform from cell to cell)

Γ15                    Γ15 Γ15 Γ15 Γ25



Cubic perovskite symm. displacements
• R: Q=π/a(1,1,1) (changes sign from cell to cell)
R15                       R’25                     R1                     R’15                 R’25

R12



Matrices become block diagonal

(In Γ matrix, acoustic Γ15 mode can be found by including uniform translation)
Finding eigenvalues becomes much easier!

Matrix elements are nonzero only between symmetrized displacements that
transform according to the same row of the same irrep
For ideal perovskite structure, 15x15 dynamical matrices

R’25:1

R’25:2

R’25:3

R15:1
R15:2

R15:3
R’15:1

R’15:2
R’15:3

R1
R12:1
R12:2
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Γ25:z



Unstable modes

• Negative eigenvalue ω2 < 0 
indicates energy-lowering distortion
(energy vs amplitude)

BaTiO3 – unstable zone-center polar phonon
freezes in to produce low-temperature ferroelectric 

phases 
couples to strain of same symmetry
(tetragonal, orthorhombic, rhombohedral)



Symmetry breaking distortions/phonons

• Full phonon dispersion relation, with unstable modes
(note zone center includes LO/TO splitting –

nonanalyticity depends on Z* and epsilon)



Symmetry breaking distortions/phonons

• Classification of low-symmetry structures by 
specification of mode content

Single modes
More than one mode (with coupling)

Q≠0 modes reduce translation symmetry
Reduction of point symmetry → nonzero strain

Of particular interest: oxygen octahedron rotations
M3

+: sense of rotation same along axis of rotation
R4

+: sense of rotation alternates along axis of rotation



Distorted perovskites: mode content+Glazer notation
H. T. Stokes, et al, “Group theoretical analysis of octahedral tilting in ferroelectric perovskites,”
Acta Cryst. B58, 934 (2002)



R3c: LiNbO3, BiFeO3

• 2 formula units (10 atoms) / cell

Note: the two octahedra are not independent!
6 oxygen atoms – related by translation in pairs



R3c: closer look at polar mode along [111]

A and B atoms displace along [111]

O atoms have lower site symmetry
Displacement not along [111] in general

View along [111]

In and up Out and up

1 formula unit per cell



For BiFeO3:

Bi 2a 
Fe 2a
O 6b



Orthorhombic perovskites (CaTiO3…) : Pnma

View along [100]



This space group is often specified using a different “setting” (choice of axes)
as Pbnm



Not just the perovskite structure

• Spinels
• Pyrochlore
• Layered perovskites (Ruddlesden-Popper, Dion-

Jacobson…)
• Rutile



Symmetry determines allowed couplings

• Macroscopic properties: need point group only
• Forms of tensors (zeros, equalities) determined
(this is explained very well for nonmagnetic crystals in J. F. 

Nye, Physical Properties of Crystals (Oxford 1957, reprinted 
many times since) and for magnetic crystals in Birss, 
Symmetry and Magnetism).

Of particular interest:
• Piezoelectric tensor
• Nonlinear optical properties--SHG (see also lectures 

by Thomas Lottermoser)
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