New Li-B-N-H Quaternary Hydrides

Frederick E. Pinkerton Materials and Processes Laboratory General Motors R&D Center

International Symposium on Materials Issues in Hydrogen Production and Storage Santa Barbara, CA, 21-25 August 2006

Acknowledgements

- Greg Meisner
- Martin Meyer
- Mike Balogh
- Jan Herbst
- Lou Hector
- Charlene Hayden
- Matt Kundrat
- Matt Scullin
- Aimee Bailey
- Laura Confer
- Richard Speer, Jr.

- Yaroslav Filinchuk
- Klaus Yvon
- John Vajo
- Sky Skeith
- Jason Graetz
- Santanu Chaudhuri
- Alex Ignatov

Outline

- Hydrogen storage requirements for solid hydrides
- Building high hydrogen capacity storage reactions
- New quaternary Li-B-N-H hydride
 - Synthesis from LiNH₂ and LiBH₄
 - Hydrogen release properties
 - Crystal structure
- Metal additives to promote hydrogen release
- Concluding remarks

The hydrogen storage problem...

With thanks to Dr. Gert Arnold

Global Alternative Propulsion Center

Dr Arnold Hydrogen Storage / TAA

Solid hydrides offer compact storage...

Solid hydrides offer compact storage...

Other aspects are more challenging

Other aspects are more challenging

New materials research

- Capacity: High specific mass
- Thermodynamics: Moderate ΔH (~35 kJ/mol H₂)
 - Hydrogen release temperature 20-80 C in 2-5 bar H₂
 - Thermal management: insertion and extraction of ΔH
- Fast kinetics
 - Complex hydrides tend to be *kinetically* limited, requiring high temperature even if the thermodynamics are good

GM "Sequel" Hydrogen Fuel Cell prototype

Li-B-N-H: Building high-capacity reactions

$NaAIH_4 \rightarrow 1/3 Na_3AIH_6 + 2/3 AI + H_2$	3.7 wt%	
\rightarrow NaH + AI + 3/2 H ₂	5.6 wt%	(7.5 wt%)
$LiNH_2 + LiH \rightarrow Li_2NH + H_2$	6.5 wt%	(9.8 wt%)
$Mg(NH_2)_2 + 2 LiH \rightarrow Li_2Mg(NH)_2 + 2 H_2$	5.6 wt%	(8.4 wt%)
$LiBH_4 \rightarrow LiH + B + 3/2 H_2$	13.9 wt%	(18.5 wt%)
$LiBH_4 + \frac{1}{2} MgH_2 \rightarrow LiH + \frac{1}{2} MgB_2 + 2 H_2$	11.5 wt%	(14.4 wt%)

Not all of the hydrogen is released

Strategy: Identify HYDROGEN-FREE compounds involving light elements that could be the DECOMPOSITION PRODUCTS of reactions between hydrogen-containing materials corresponding to COMPLETE HYDROGEN RELEASE

Hypothetical reaction

- Lithium Boronitride: Li₃BN₂
 - Several known polymorphs
 - Tetragonal P4₂2₁2 low temperature phase (<860°C)
 a = 4.6435 Å c = 5.2592 Å
 - Monoclinic P2₁/c high temperature phase
 - a = 5.1502 Å b = 7.0824 Å c = 6.7908 Å β = 112.96°
 - High pressure phase (DeVries and Fleischer)
- Hypothetical reaction:
 - $2 \text{ LiNH}_2 + \text{LiBH}_4 \rightarrow \text{Li}_3 \text{BN}_2 + 4 \text{ H}_2 \quad 11.9 \text{ wt\% H}$
- Success! > 11 wt% H₂ release
 - But here's the twist:

We formed a new quaternary Li-B-N-H phase

XRD Results: Mix & Heat

Premill LiNH₂ and LiBH₄ <u>separately</u> for 10 min, then mix and heat

The *in situ* XRD data at 75°C is identical to that at room temperature (RT) when the experiment started.

After mixing and storing for 12 days at RT, the mixture **spontaneously** formed a substantial quantity of the α **phase**!

Heating above ~95°C completes the conversion to the α phase.

(TGA) $2 \text{LiNH}_2 + \text{LiBH}_4$ mixed powders ("mix and heat") 13.1 wt% loss exceeds theoretical

RGA mass spectrometry

~2 mole% NH₃

11.5 wt% H₂, 1.6 wt% NH₃

2 LiNH₂ + LiBH₄ → α Li-B-N-H (solid) → α Li-B-N-H (liquid) ~195°C → Li₃BN₂ (solid) + 4 H₂ >250°C

"Destabilized LiBH₄" ? New compound, less stable than LiBH₄

α -phase crystal structure

- Single crystals formed by recrystallizing from the melt
- Body-centered cubic space group: I2₁3 (#199) a = 10.676 Å
- NH₂⁻ and nearly tetrahedral BH₄⁻ units persist in the structure
- Equilibrium composition:

Li₄BN₃H₁₀ ! (= 3 LiNH₂ + LiBH₄)

Filinchuk et al., Inorg. Chem. 45, 1433 (2006).

What about <u>3</u> LiNH₂ + LiBH₄?

If the α phase is Li₄BN₃H₁₀, then what is the dehydrogenation behavior of samples made at the 3 LiNH₂ + LiBH₄ composition?

desorption (TGA) 3 LiNH₂ + LiBH₄ Ball milled 5 hrs

Hydrogen

18 wt% loss (theoretical content 11.1 wt%)

RGA mass spectrometry

~9 mole% NH₃

9.6 wt% H₂, 8.3 wt% NH₃

H_2 and NH_3 release in $(LiNH_2)_x(LiBH_4)_{1-x}$

What's so special about 2:1? Li₃BN₂ !

- Dehydrogenation from the liquid is not controlled by the starting α-phase, but rather by the product Li₃BN₂ phase
- For 2 LiNH_2 + LiBH_4 : $\text{Li}_3\text{BN}_2\text{H}_8$ (liquid) $\rightarrow \text{Li}_3\text{BN}_2$ + 4H_2
- For 3 LiNH₂ + LiBH₄: Li₄BN₃H₁₀ (liquid) \rightarrow Li₃BN₂ + ¹/₂ Li₂NH + 4H₂ + ¹/₂ NH₃

Dehydrogenated material: New Li₃BN₂ polymorph

Promoting H₂ release with metal additives

- Composition: 2 LiNH₂ + LiBH₄ + additive
- All samples ball milled for 5 hrs
 - Fully converted to α phase
- Metals or metal compounds added prior to ball milling
 - Metal powder
 - Metal dichlorides
 - "Pt/Vulcan carbon": 2 nm diameter Pt nanoparticles supported on a Vulcan carbon substrate

Without additive

250

300

Temperature (°C)

350

5 wt% TiCl₃

- additive has been shown to be very effective in some hydrogen storage systems
 - NaAlH₄ — (Bogdanović et al.)
 - LiBH₄ + $\frac{1}{2}$ MgH₂ (Vajo et al.)
- **TiCl₃ does not** dehydrogenation of Li-B-N-H
- significantly improve

86 84 200 150

92

90

88

400

Pinkerton et al., J. Phys. Chem. B 110, 7967 (2006).

<u>GM</u>

•

Pt/Vulcan carbon additions

Accelerated isothermal H₂ release

Mass spectrometry gas analysis

• Additive-free Li-B-N-H:

- H₂ and NH₃ release occur together above 250°C
- Evolved gas ~2 mole% NH₃
- NiCl₂-added:

<u>GM</u>

- onset of H₂ release is 120°C
- Total NH₃ release reduced by an order of magnitude

Pinkerton et al., JALCOM, available online.

Comparison of intermediate phases

What are the additives doing?

 Small quantities (~1 mole%) have a large effect

- $\Delta T_{\frac{1}{2}}$ scales with the specific surface area (m²/g) of the additive particles
- Effect appears to saturate at low addition levels (~2 mole% for NiCl₂)
- Likely acting as a dehydrogenation catalyst

What about reversibility?

- Dehydrogenation appears to be exothermic
- Thermodynamically unstable
- => difficult to reverse (off-board regeneration)

Caveat:

It's not a simple system: H_2 release, NH_3 release, and Li_3BN_2 solidification are happening simultaneously

Pinkerton et al., J. Phys. Chem. B 110, 7967 (2006).

DFT estimates of reaction enthalpy

• $2 \operatorname{LiNH}_2 + \operatorname{LiBH}_4 \rightarrow \operatorname{Li}_3 \operatorname{BN}_2 + 4 \operatorname{H}_2$

- ∆H ~ 23 kJ/mol H₂ Aoki et al., Appl. Phys. A 80, 1409 (2005)
- ∆H = 18-24 kJ/mol H₂ Alapati et al., JPC B 110, 8769 (2006)
- **Caveats:** zero T calculations *excluding zero point energy*
- Both suggest reversibility of Li₃BN₂ to the two-phase mixture
- $\text{Li}_4\text{BN}_3\text{H}_{10} \rightarrow \text{Li}_3\text{BN}_2 + \frac{1}{2}\text{Li}_2\text{NH} + \frac{1}{2}\text{NH}_3 + 4\text{H}_2$
 - $\Delta H = 24 \text{ kJ/mol } H_2$ Herbst & Hector, APL 88, 231904 (2006)
 - Includes zero point energies and phonons: 298 K values
 - Endothermic hydrogen release suggests reversibility
 - **Caveat:** does not include α -phase melting or Li₃BN₂ solidification
- May be too unstable:
 - 1 bar H₂ equilibrium temperature is ~130-240 K

Aside:

• Reaction enthalpy for

 $3 \text{ LiNH}_2 + \text{LiBH}_4 \rightarrow \text{Li}_4 \text{BN}_3 \text{H}_{10}$

- ∆H = -6 kJ/mol – Herbst & Hector, APL 88, 231904 (2006)

- Formation of Li₄BN₂H₁₀ is slightly exothermic
- Consistent with observed conversion 2 LiNH₂ + LiBH₄ $\rightarrow \alpha$ Li-B-N-H

Attempt to rehydride LiB_{0.33}N_{0.67}H_{2.67} + 5 wt% Pt/Vulcan carbon

Challenges for quaternary Li-B-N-H

- Thermodynamics
 - Understand reaction enthalpies for dehydrogenation of α Li-B-N-H at different compositions
- Kinetics
 - High temperatures required to overcome slow diffusion and strong hydrogen binding and in complex hydrides
- Catalysis
 - Why does Ni or Ni₃B work so well?
 - Why doesn't TiCl₃ work?
- What if we could reduce the Li-B-N-H hydrogen release temperature below the α phase melting temperature (similar to what was done for NaAlH₄)?
 - Reversibility?
 - Suppress NH₃ release?
 - More practical? (Or at least, less impractical?)

On-board hydrogen storage materials-

7,

¥

<u>GM</u>

Quaternary hydrides are fertile hunting ground in the search for new hydrogen storage materials

Summary

- Strategy of looking for hydrogen-free products has been successful
- We have discovered a new quaternary hydride, α Li-B-N-H (Li₄BN₃H₁₀), that releases all of its hydrogen above 250°C
 - H_2 and NH_3 release are strong functions of composition, with optimum H_2 release near $(LiNH_2)_{0.67}(LiBH_4)_{0.33}$ [2:1]

• Numerous other Li-B-N-H phases exist

- 4 phases along the $(LiNH_2)_x(LiBH_4)_{1-x}$ tie line (2 metastable)
- 4 additional phases during Li-B-N-H decomposition with additives
- 3 more phases have been found in the Li-B-N-H phase diagram (Torgersen et al., MRS 2004 Fall Meeting)
- Metal nanoparticle additions reduce the dehydrogenation temperature by up to 112°C (NiCl₂)
- Quaternary hydrides are fertile hunting ground in the search for new hydrogen storage materials

