Introduction to Thermal Transport

Simon Phillpot

Department of Materials Science and Engineering University of Florida Gainesville FL 32611

sphil@mse.ufl.edu

Objectives

•Identify reasons that heat transport is important

•Describe fundamental processes of heat transport, particularly conduction

•Apply fundamental ideas and computer simulation methods to address significant issues in thermal conduction in solids

- •Patrick Schelling (Argonne National Lab \rightarrow U. Central Florida)
- •Pawel Keblinski (Rensselaer Polytechnic Institute)
- •Robin Grimes (Imperial College London)
- •Taku Watanabe (University of Florida)
- •Priyank Shukla (U. Florida)
- •Marina Yao (Dalian University / U. Florida)

Part 1: Fundamentals

Thermal Transport: Why Do We Care?

Heat Shield: Disposable space vehicles

Apollo 10 Heat Shield

Cross-section of Mercury Heat Shield

Ablation of polymeric system

University of Florida MATERIALS Sci. & Eng.

Heat Shield: Space Shuttle

Thermal Barrier Coatings for Turbines

http://www.mse.eng.ohio-state.edu/fac_staff/faculty/padture/padture/padturewebpage/padture/turbin Computational Materials Science Focus Group MATERIALS & Eng.

Heat Generation in NanoFETs

- Scaling \rightarrow Localized heating \rightarrow Phonon hotspot

University of Florida

MATERI

• Impact on ESD, parasitic resistances ?

Thermoelectrics

cold junction

Heat Transfer Mechanisms

Three fundamental mechanisms of heat transfer:

- Convection
- Conduction
- Radiation
- Convection is a mass movement of fluids (liquid or gas) rather than a real heat transfer mechanism (heat transfer is <u>with</u> convection rather than <u>by</u> convection)
- ➤ Radiative heat transfer is important at high temperature
- Conduction is heat transfer by molecular or atomic motion Heat conduction dominates in solids

Radiation

Planck's Law

$$E(\lambda,T) = \frac{2\hbar c^2}{\lambda^5} \frac{1}{e^{-\hbar c/\lambda kT} - 1}$$

 $h = 6.625 \times 10^{-27} \text{ erg-sec (Planck Constant)}$ $k = 1.38 \times 10^{-16} \text{ erg/ K} \text{ (Boltzmann Constant)}$ $c = 3 \times 10^{10} \text{ cm/sec} \text{ (Speed of Light)}$

Stefan-Boltzmann Law

E = σT^4 σ = 5.67 x 10⁻⁸ Watts m⁻² K⁻⁴ Stefan-Boltzmann constant

Wien's Law

 λ_{max} =3x10⁶ /T

http://csep10.phys.utk.edu/astr162/lect/light/radiation.html

Convection

Transport of energy by motion of atoms

Liquids and Gases

Thermal Conduction

Dumb and Dumber

Why does his tongue stick to a metal pole?

Would it stick to a wooden pole?

University of Florida MATERIALS Sci. & Eng.

What is "Ice"?

The Hot Ice Caper

with

Sam Spade

Diamond vs. Cubic Zirconia

Diamond

Cubic Zirconia

http://wholesale-scales.com

Tools

http://www.sei.co.jp/RandD/itami/e-tool/gif/variety.gif

Phenomenology of Thermal Conductivity

University of Florida MATERIALS Sci. & Eng

Thermal Conductivity of Solids

Mechanisms of Thermal Conductivity

Electrical conductivity

 σ (Cu) ~ 5 10⁵ (Ω cm)⁻¹ σ (diamond) ~ 10⁻¹⁰ (Ω cm)⁻¹

Electronic Conductivity and Wiedemann-Franz Law

Electrons carry energy as they move \rightarrow transport of heat

 $k/\sigma T = L_0$

k – thermal conductivity				
σ – electrical conductivity		Element k		k/σT
T – temperature			(W/mK)	
$L_0 - Lorentz constant$			()	
		Li	71	2.22 10-8
$L_0 = \frac{\pi^2}{3}$	(1×2)	Na	138	2.23
	(κ)	In	88	2.58
	(-)	Bi	9	3.53
	$\left(e \right)$	AI	238	2.14

 $L_0 = 2.45 \ 10^{-8} \ W\Omega/K^2$

Crystalline Materials: From Solids to Springs

Heat transport from atomic vibrations

Vibration of spring system similar to vibrations in solids

Harmonic Model

$$E = \frac{1}{2} kx^2$$

Simple harmonic solid with one and two atoms in the basis \rightarrow acoustic and optical phonons

Long Wavelength Longitudinal Acoustic Phonon

Short Wavelength Longitudinal Acoustic Phonon

Longitudinal Optical Phonon

Acoustic vs. Optical

University of Florida MATERIALS Sci. & Eng

Transverse Phonons

Computational materials objence rocus aroup

Longitudinal vs. Transverse Phonons

Which has lower energy? Why?

Phonons

Phonons and Thermal Conductivity

MATERIA

& Eng

Why is the Thermal Conductivity Finite?

If phonons did not scatter the thermal conductivity would be infinite?

Phonon Scattering Mechanisms

Phonon-phonon Scattering

Sample-size dependent thermal conductivity of single crystal LiF

- Usually $l < \Lambda < L$
- New physics arises when L is reduced to nanometers

Temperature Dependence

 $\kappa \sim 1/3 c_v v \lambda$

MATERIALS

& Eng

Thermal Conductivity of Solids

Thermal Conductivity and Thermal Diffusivity

Thermal Expansion and Thermal Conductivity

- Thermal expansion
 - $\square \alpha$ =0 for a harmonic solid
 - Thermal expansion ismeasure of anharmonicity
- Thermal Conductivity
 - $\Box \kappa = \infty$ for harmonic solid
 - Anharmonicity \rightarrow finite κ

Anharmonicity: Thermal Expansion and Thermal Conductivity

Thermal Conductivity and Thermal Expansion

Reasonable correlation between thermal conductivity and thermal expansion

What About Glasses?

No long-ranged order \rightarrow no phonons \rightarrow How is heat transported?

We will look at amorphous materials later

Computational Materials Science Focus Group

Solids have Much High Thermal Conductivities than Liquids

Water	0.6
Ethylene Glycol	0.25
PTFE	0.2
Wood	0.2 - 0.4
Engine Oil	0.15
Fiberglass	0.04
Air	0.03
Snow	0.05 – 0.25 (T < 0C)
Silica Aerogel	0.003

Liquid Na - 72 W/mK

Nanofluids

Why Nanoparticles Are Better Than Microparticles

Nanoparticles have about 20 percent of their atoms near the surface, allowing them to absorb and transfer heat efficiently.

Microparticles have most of their atoms far beneath the surface, where they cannot participate in heat transfer.

http://www.anl.gov/Media_Center/News/2004/nanofluidsbig.html

Computational Materials Science Focus Group

Summary

- •Radiation vs. Convection vs. Conduction
- •Electronic vs. Phonon Conduction
- •Physics of Phonons
- •Basic Phenomenology of Thermal Conductivity

Part 2: Case Studies in Thermal Conductivity

Preamble: Introduction to Molecular-Dynamics Simulation

- Treat atoms as structureless spheres
- Write down a form by which the atoms interact, V(r)
- Solve Newton's Second Law:
 - F= ma

•Where F = $-\nabla V(r)$

Case Study #1: Thermal Barrier Coatings

Irsee, August Computational Materials Science Focus Group

http://www.mse.eng.ohio-state.edu/fac_staff/faculty/padture/padture/padturewebpage/padture/turbine_blaidesibg/ Florida Computational Materials Science Focus Group MATERIALS Science & Science Focus Group

D. R. Clarke, UCSB

Thermal Conductivity of Oxides

Approach to determination κ

• Non-equilibrium: Add and remove heat

Steady-State Temperature Profile

Temperature and Concentration Dependence of κ

	Sim. (W/mK)	Expt. (W/mK)
ZrO ₂ (300K)	к=8.92	к=8.22
YSZ (>500K)	к= 3.0	к= 2.3

Temperature (K)

Phonon Polarization

f=1.6THz

f= 3THz

Highly polarized - propagon

Random polarization - diffusion

Normal Modes in Amorphous Materials

• Propagons transport heat efficiently

• Diffusons less efficient, no directionality

• Energy in locon mode remains localized unless scattered. True insulating state.

Diffuson

Locon

Chemical vs. Structural Disorder

Si Single crystal

(001) Si GB Superlattice

Amorphous Si

A. Bodapati et al., APL 88 141908 (2006)

Computational Materials Science Focus Group

Objective

Identify candidate materials for new thermal barrier coatings

Current

Yttria-stabilized zirconia (κ~2 W/m-K)

Performance criteria

Low thermal conductivity high thermal expansion coefficient (match alloy substrate) Elastically soft / mechanically compliant (match alloy) Chemical compatibility Mechanical integrity

Fluorite vs. Pyrochlore

Comparison with Experiment - Thermal Conductivity

	κ _{expt} (W/mK)	κ_{simul} (W/mK)	$\kappa_{\rm simul}/\kappa_{\rm exptl}$
La ₂ Zr ₂ O ₇	1.56	1.98	1.27-1.32
	1.5		
	1.5		
Nd ₂ Zr ₂ O ₇	1.6	1.83	1.14-1.38
	1.33		
Sm ₂ Zr ₂ O ₇	1.5	2.09	1.39
	1.5		
Eu ₂ Zr ₂ O ₇	1.6	1.99	1.24
Gd ₂ Zr ₂ O ₇	1.6	1.91	1.19-1.91
	1.0		
	1.1-1.4		

Analysis

$$\kappa = 1/3 C_v v \lambda$$

κ- thermal conductivity C_v - specific heat = $3k_B/a^3$ v - speed of sound λ - mean free path

 $\lambda/a = \kappa a^2/88k_B v$

*a*²

Inverse Speed of Sound

Mean Free Path

Effect of Cation and Oxygen Disorder

Pyrochlore No disorder	YSZ Anion and cation disorder
$Y_2Zr_2O_7$	$(ZrO_2)_2 - Y_2O_3$
$\kappa = 2.27 \text{ W/m-K}$	κ=1.96 W/m-K

Disorder decreases thermal conductivity by $\sim 10\%$

Engineering Better Thermal Barriers?

- B ion radius largely determine κ A ion radius not as important
 - Use B ion to determine thermal conductivity

- chemical compatibility
- mechanical stability

University of Florida & Eng

Engineering Better Thermal Barriers?

Large B is good for lower thermal conductivity lower bulk modulus higher thermal expansion Large B is bad for phase stability

Thermal expansion coefficient

Pyrochlores for Inert Matrix Fuel

Zirconates have low antisite energies \rightarrow good radiation tolerance

Sickafus, Minervini, Grimes et al. Science 2000

Schelling, Phillpot and Grimes, Phil Mag. Lett , 2004

However, zirconates have low thermal conductivity

→ composite with higher k material

Can Pyrochlores Be Made Even Better Thermal Barriers?

- How low can thermal conductivity go?
 - $\kappa = 1/3 C v \lambda$
 - $\lambda \sim 0.31$ 0.45 a
 - nearest neighbor distance ~0.22a
 - further reduction of κ by 1/3 1/2 possible

• How can this be accomplished?

- alloying to increase cation and oxygen disorder
- graded compositions, composites
- microstructural control (interfacial resistance)

Case Study #2: Interfacial Thermal Conductivity

Phonon Scattering Mechanisms

Interfacial (Kapitza) Thermal Resistance

$$J = G_K \Delta T$$

Three grain boundaries:

• (001) θ =43.6° Σ 29 - high angle, high energy (001) θ =11.4° Σ 101 - high angle, high energy (111) θ =42.1° Σ 31 - high angle, high energy

Kapitza Conductance in YSZ

H.-S. Yang et al., Acta Mater. (2002)

Kapitza Conductance

Three Si grain boundaries:

• (001) θ =43.6° Σ 29 - high angle, high energy (001) θ =11.4° Σ 101 - high angle, high energy (111) θ =42.1° Σ 31 - high angle, high energy

Cahill, Goodson, and Majumdar, Jn. Heat Transfer, 124, 223, (2002)

• data for nanocrystalline YSZ similar to that for several heterophase systems

Low-Energy, High-Angle GB: (111) θ=42.10• *Σ*31

 $E_{gb} = 0.64 \text{ J/m}^2$

Coordination at GB C3: 0% C₄: 94% C₅: 6%

 $J = G_K \; \Delta T$

```
G_{K} = 1.53 GW/m^{2}K
```


Typical High-Energy GB: (001) θ=43.60• (*Σ29*)

Σ29 (001)

West boly in she may refer

100

z (nm)

50

550

€530

450

0

Coordination at GB C₃:8% C₄: 82% C₅: 10%

 $G_{K} = 0.85 GW/m^{2}K$

150

200

Interface Conductance

Computational Materials Science Focus Group

High-Frequency LA mode

& Eng.

Frequency Dependence of Phonon Scattering

Kapitza conductance using MD results for $\alpha(\omega)$

$$\sigma_{\rm K}({\rm T}) = (1/\Omega) \sum \hbar \omega_{\lambda \mathbf{k}} \partial n(\omega_{\lambda \mathbf{k}},{\rm T}) / \partial {\rm T} \partial \omega_{\lambda \mathbf{k}} / \partial {\rm k}_{\rm z} \alpha_{\lambda \mathbf{k}}$$

	σ_{K} (MD)	$\sigma_{\rm K}$ (computed) GW/m ² K	computed/MD
Σ29	0.855	0.457	0.534
Σ101	1.710	0.904	0.528

- 1. Computed results only includes LA, TA modes
- 2. The $\Sigma 101$ computed result assumes $\alpha(\omega)$ same for TA modes as LA
- 3. Effects of non-normal incidence not included

S.R.Phillpot and A.J.H. McGaughey, Materials Today, June 2005

Ultrananocrystalline Diamond (Experiment)

Measured $\kappa = 12 \text{ W/mK}$

for grain size 3~5 nm at 310K

 $\rightarrow G_K = 3 \text{ GW/m}^2\text{K}$

Angadi et al. JAP 99, 114301 (2006)

A Typical Temperature Profile

Ultrananocrystalline Diamond (Simulation)

- Average grain size, 3 nm, thickness 2a₀, mean temperature 300K
- Thermal conductivity 13.8 W/mK

Using d = 3 nm, $\therefore G_K = 4.6 \, GW / m^2 K$

Comparison of Experiment and

Simulation

	к	G_{K}
	[W/mK]	$[GW/m^2K]$
Experiment	1-12	3
Simulation	14	4.6
(Polycrystalline)		
Simulation	26	8.5
(Grain Boundary)		

Note: $d = 3 \text{ nm}, \kappa_o = 2200 \text{ W/mK}$ at room temperature

- Experimental and simulation results compare within the factor of 2.
- κ/κ₀ ~ 1%
- G_K of diamond is much higher than that of any other materials.

Cahill et al. JAP 90 5 (2003)

Kapitza Conductance and Twist Angle

• G_K remains fairly constant over a wide range of angle (~20° to 70°)

 \rightarrow Coordination of atoms in the GBs is very similar

•Higher conductance at low angle (<15°) because of the sparse distribution of dislocation

• Slight increase near 90° because of the symmetry of diamond structure

Twist angle [degree]

Bonding and Interfacial Conductance: Diamond vs. Si

(001) θ =43.60° (Σ 29)

Silicon	Coordination	Si	С
	2	0%	2%
	3	8%	80%
	4	82%	18%
	5	10%	0%
	<c></c>	4.02	3.26

Diamond

Better bonding across the silicon GB should lead to better thermal transport

Diamond vs. Silicon

(001) Σ29 Grain Boundary

- Si: (001) $E_{gb} = 1.32 \text{ J/m}^2$ $G_K = 0.85 \text{GW/m}^2 \text{K}$
- C: (001) $E_{gb} = 6.09 \text{ J/m}^2$ $G_K = 8.85 \text{ GW/m}^2 \text{K}$

Conclude: Diamond GBs 10X better conductors of heat than Si GBs

But: κ (diamond) = 2000 W/m-K κ (Si) = 150 W/m-K

Kapitza length (equivalent thickness of perfect crystal):

$$\lambda_{\rm K} = {\rm k}/{\rm G}_{\rm K}$$

Normalize Kapitza Length to Lattice Parameter

Final conclusion: Silicon GBs are better conductors of heat than diamond GBs!

Kapitza Length

Case Study #3 Point Defects

Motivation

- Phonons play a dominant role in thermal transport of electric insulators e.g. silicon and many oxides
- Two most important processes:
 - Phonon-phonon scattering
 - Phonon-point defect scattering
- We focus on the phonon scattering from point defects

Classic formula-isotopic effect

$$[t(f)]^{-1} = A \cdot (\frac{\Delta m}{m})^2 \cdot \mathbf{C} \cdot \mathbf{f}^4 \qquad \frac{1/t \sim \mathbf{C}}{1/t \sim \mathbf{f}^4}$$

- t^{-1} phonon scattering rate A material constant
- Δm mass difference
- c isotope concentration
- f frequency

The formula was derived from weak scattering.

Question:

- in what range of frequency
- at what concentration of dopant the formula is applicable ?

P. G. Klemens, Proc. R. Soc. London, Ser. A **68**, 1113 (1955)

Simulation system

Thickness of doped region Δz $\Delta z = z_2 - z_1$ (20 - 300 unit cell)

Dopant concentration c 0.078 - 1.56 atom%

Phonon wave packet frequency f: 1.5 -13THz

- Simulation cell: Maximum used: 2×2×6000 unit cells L_z=6000 unit cells (3.268µm)
- Simulation time step size:
 dt = 0.55 fsec
- Diamond-structured Si
- Stillinger-Weber potential

Simulation system

- Dopants randomly distributed in doped region
- Differ from Si in mass M_{dop} = $4M_{Si}$ =112 amu (atomic mass unit) larger than M_{Ge} (72.59amu)
 - To understand the effects of mass defect
 - To compare with previous simulations of superlattices

Calculation procedure

Four steps:

- structure creation
- initial phonon wave packet generation
 - well-defined
 longitudinal acoustic
 phonon
- MD simulation
- energy analysis

Phonon propagation and scattering description at atomic scale

Snapshots

Energy trapped in the defect region becomes negligible by ~200 ps

Energy analysis

Time evolution of trapped energy

Physically reasonable results

Concentration effect

Basically linear in concentration, but unexplained peak in reflection at 1% -old description

well linear when the concentration is less than 0.3%.

2.96THz ∆z = 200 unit cell

/t ~ c
$$[t(f)]^{-1} = A \cdot (\frac{\Delta m}{m})^2 \cdot \mathbf{C} \cdot \mathbf{f}^4$$

1

Mass effect

$$[t(f)]^{-1} = A \cdot (\frac{\Delta m}{m})^2 \cdot \mathbf{C} \cdot \mathbf{f}^4$$

Frequency effect

T drops quickly with f decreasing. (f < 3.5 THZ) T reaches minimum around 3.5 THz

Frequency effect

1/t ~ f ^{$$\alpha$$} $[t(f)]^{-1} = A \cdot (\frac{\Delta m}{m})^2 \cdot \mathbf{C} \cdot f^4$

- Combining phonon wave-packet dynamics and MD simulation can provide an effective approach to develop atomic-level view of the scattering of phonons from point defects.
- The energy transmission and reflection coefficients are approximately linear in the dopant concentration.
- The transmission (reflection) coefficient is strongly affected by phonon frequency. At low frequency the order of power is around 4.

$$[t(f)]^{-1} = A \cdot (\frac{\Delta m}{m})^2 \cdot \mathbf{C} \cdot \mathbf{f}^4$$

Summary

- •Radiation vs. Convection vs. Conduction
- •Electronic vs. Phonon Conduction
- •Physics of Phonons
- •Basic Phenomenology of Thermal Conductivity
- •Use of Simulation to Develop Understanding of Phonon-mediated Thermal transport