PRODUCTS 1

Hydrogen Storage and Delivery in a Liquid Carrier Infrastructure

Guido P. Pez, Alan C. Cooper, Hansong Cheng, Bernard A. Toseland and Karen Campbell

Corporate Science and Technology Center, Air Products and Chemicals, Inc., Allentown, PA 18195

©Air Products and Chemicals, Inc, 2006

Air Products' Hydrogen Experience

- World leader in industrial hydrogen supply
 - Own, operate, and distribute hydrogen – Americas, Europe, Asia
 - Operate over 60 plants, 7 pipelines, produce over 1.25 million tons/year
- Demonstration leader in hydrogen fueling infrastructure
 - 30 fueling stations Americas, Europe, Asia
 - Technology advances include mobile fueling, underground liquid storage, dispensing, onsite generation, storage
 - Global safety leader

Hydrogen Storage Methods

- Physical methods
 - compression (350, 700 bar)
 - liquid hydrogèn (20 K)
- Physical adsorption (H-H bond remains intact)
 - adsorption on high surface area materials
 - activated carbon, carbon nanotubes, zeolites
- Chemisorption (H-H bond broken)
 - metal hydrides (LaNi₅, FeTi)
 - advanced hydrides (NaAIH₄)
 - "chemical hydrides" hydrólysis (NaBH₄), benzene +3H₂ => cyclohexane

Hydrogen storage is one of the key technical barriers to the use of hydrogen as an energy carrier

An Integrated Production, Storage and Delivery of Hydrogen – Using Reversible Liquid Carriers (LQ*H₂)

Approach:

An off-board regenerable liquid carrier for vehicles and stationary H₂ gas delivery

- Conformable shape liquid tank with design to separate liquids; 22.5 gallons for 5 kg hydrogen at 6 wt. % and unit density
- Heat exchange reduces the vehicles' radiator load by ca. 40% (for ∆H of 12 kcal/mol H₂ and 50% FC efficiency)

Maximum energy efficiency: by (a) recovering the exothermic (- Δ H) of hydrogenation and (b) utilizing the waste heat from the power source to supply the Δ H for the endothermic dehydrogenation.

Partial List of Organic "Liquid Carrier" Performance Criteria

- Optimal heat of dehydrogenation (\Delta H = 10-13 kcal/mole H₂), enabling the catalytic dehydrogenation in an all-liquid state at temperatures (<200 °C) for utilizing the FC's or ICE's waste heat.</p>
- Meet DOE's hydrogen on board storage and delivery targets
- Low volatility (b.p. > 300 °C), enabling the dehydrogenation in small compact reactor systems onboard vehicles and reducing exposure to vapors
- Low toxicity and environmental impact
- Clean catalytic hydrogenation and dehydrogenation, enabling multiple cycles of use with no significant degradation of the molecule
- Manufacture of the liquid carriers from low cost, source raw materials.

Prior Art on Organic Liquid Carriers

Hydrogen and energy storage ¹ by a reversible catalytic hydrogenation of naphthalene $C_{10}H_8$ to decalin $C_{10}H_{18}$ (a "liquid organic hydride"²)

High conversion of $C_{10}H_{18}$ in membrane reactor at ~320°C² Efficient H₂ evolution from $C_{10}H_{18}$ from 195°C to 400°C under "wet-dry multiphase"³ or "superheated liquid film" conditions⁴⁻⁵. (Both are two-phase liquid/vapor processes.)

- 1. E. Newson Int,. J. Hydrogen Energy, <u>23</u> 905 (1998)
- 3. N. Kariya, M. Ichikawa *et al*, Appl. Cat A, 233, (2002), 91-102
- 5. S. Hodoshima and Y. Saito, Int. J. Hy Energy, 28, (2003), 197-204
- 2. R. O. Loufty *et al*, Proc. Of Int. H₂ Energy Forum, (2000) 335-340
- 4. S. Hodoshima *et al*, Suiso Enerugi Shisutemu 25, (2000), 36-43

Fundamental Energetics for Containing Hydrogen

For H₂ (gas) + carrier \checkmark H₂ (contained) equilibrium: $\Delta G = \Delta H - T \Delta S = RTInK$

For containing hydrogen in a spontaneous prcess:

a) For carrier bound, but intact molecular H₂ (physisorption) (- Δ H) <~8 kcal mole H₂ (- Δ S) <~25 e.u.

b) For carrier bound dissociated H2 (chemisorption)

(- Δ H) >~8 kcal/mole H₂ (- Δ S) ~25-30 e.u.

and ~30 e.u. for H₂ +aromatics \rightarrow alkanes

The greater variable contribution to ΔG is from ΔH

9

Observed and Desirable H₂-Containment Enthalpies (- Δ H, kcal/mole H₂)

Note: Lower Heating Value for $H_2(LHV) = 57$ kcal/mole

- 1. G. Sandrock, J. of Alloys and Compounds 293-295 (1999) 877
- 2. B. Bogdanovic, G. Sandrock, MRS Bulletin 2002, 712
- 3. W. Peschka, "Liquid Hydrogen Fuel of the Future" Springer-Verlag p. 65
- 4. M. Haas et al., J. of Materials Research <u>20</u> (12) 3214 (2005)
- 5. K. Watanabe et al., Proc. R. Soc. London <u>A333</u>, 51 (1973)

Enthalpies of Hydrogenation as Function of N Substitution

©Air Products and Chemicals, Inc, 2006

US and non-US patents pending

Hydrogenation/Dehydrogenation of N-Ethylcarbazole

Flow Measurement of Hydrogen Generation from N-ethylcarbazole (Ramp from 25°C to 200°C, 1 atm. H_{2,'} 40:1 substrate/catalyst)

GC/MS analysis after run termination showed loss of 5.7% wt. H₂

Dehydrogenation: Ramp from 25 °C to 200 °C, 15 psia H₂ Hydrogenation: 170 °C, 1200 psia H₂

Rapid hydrogenation and cycling stability

©Air Products and Chemicals, Inc, 2006

Understanding the Mechanism

()* : $\Delta H_{calc.}(B3LYP/G-311G^{**})$ in Kcal/mol H₂

 $\Delta H_{exp.}$ (overall) = 12.2 kcal/mole H₂

N-ethylcarbazole Dehydrogenation: (Ramp from 25 °C to 150 °C, 15 psia H₂)

Slow catalytic dehydrogenation rate at 150 °C

Dehydrogenation Flow Reactor Test System

2" Packed Bed Reactor

Packed Bed Reactor Dehydrogenation/ Hydrogenation Cycling Demonstration

190°C; 0.25 ml./min/ Liquid Flow

©Air Products and Chemicals, Inc, 2006

H₂ Purity from Continuous Flow Dehydrogenation Experiments

Component	Mole %
Hydrogen	99.9+
Methane	0.0013%
Ethane	0.0083%
Carbon Monoxide	ND
N containing compounds	ND
C3's	ND
C4's	ND
C5's	ND
C6's	ND

ND – Non Detectable

Illustration of Conformers: Decalin

©Air Products and Chemicals, Inc, 2006

Perhydro-Nethylcarbazole Conformers

At B3LYP/G-311G** level

 $\Delta E = 2.6 \text{ kcal/mol}$

 $\Delta E = 8.6 \text{ kcal/mol}$ ©Air Products and Chemicals, Inc, 2006

 $\Delta E = 14.5$ kcal/mol **products**

Flow Measurement of Hydrogen Generation from N-ethylcarbazole: Kinetic versus Thermodynamic Conformers

US and non-US patents pending

Increasing Capacity: Hydrogen Generation from Phenylenecarbazole

Time (min.) GC/MS analysis after run termination showed loss of 6.2 % wt H_2 Theory is 6.9% wt H_2

No Perfect World!

Presence of secondary amine confirmed by alkylation and by GC/MS

Second fused five-membered rings can cause strain.

Phenanthrolene Dehydrogenation

[©]Air Products and Chemicals, Inc, 2006

PRODU

Oxygen-containing Carrier

A member of a new class of hydrogen carriers containing only oxygen heteroatoms

Summary and Conclusions

- Liquid carrier concept provides an integrated hydrogen production, delivery and on-board storage scenario.
 - Maximize use of existing liquids infrastructure
 - Safety
 - Energy efficiency
- Continuing material challenges:
 - Optimal liquid carrier: 9 wt% for system (DOE's 2015 target)
 - Optimal dehydrogenation catalysts for a compact, on-board liquid carrier → H₂ gas conversion reactor

Acknowledgements

Atteye H. Abdourazak

Donald Fowler

Aaron R. Scott

Sergei Ivanov

DOE Hydrogen and Fuel Cells Program

Thank you

tell me more www.airproducts.com