Catalysis in hydrogen production and storage

J. K. Nørskov Center for Atomic-scale Materials Design Technical University of Denmark <u>norskov@fysik.dtu.dk</u>

- Catalysis in hydrogen production
 - Theory: J. Rossmeisl, J. Greeley, T. Bligaard, B. Hinnemann, P.G. Moses
 - Experiment: T. Jaramillo, J. Bonde, K. Jørgensen, J. Nielsen,
 S.Horch, I. Chorkendorff
- Catalysis in hydrogen storage
 - Theory: J. Hummelshøj, T. Vegge, K. Honkala
 - Experiment: C. Christensen, T. Johannesen, R. Z. Sørensen, U. Quaade

Sustainable hydrogen production

A. Züttel, L. Schlapbach

Electrolysis

Cathode: $2(H^++e^-) \rightarrow H_2$

Anode: $H_2O \rightarrow \frac{1}{2}O_2 + 2H^+$

Total: $H_2O \rightarrow \frac{1}{2}O_2 + H_2$

 $\Delta G^0 = 2.46 \text{ eV} (1.23 \text{ eV/electron})$

Electrolysis

Cathode: $2(H^++e^-) \rightarrow H_2$

Anode: $H_2O \rightarrow \frac{1}{2}O_2 + 2H^+$

Total: $H_2O \rightarrow \frac{1}{2}O_2 + H_2$

 $\Delta G^0 = 2.46 \text{ eV} (1.23 \text{ eV/electron})$

DFT calculations give free energy of intermediates:

Nørskov, Bligaard, Logadottir, Kitchin, Chen, Pandelov, Stimming, JES 152, J23, (2005)

Volcanoes in electrochemistry

THE RATE OF ELECTROLYTIC HYDROGEN EVOLUTION AND THE HEAT OF ADSORPTION OF HYDROGEN

BY ROGER PARSONS

Dept. of Physical and Inorganic Chemistry, The University, Bristol 8

Received 10th December, 1957

FIG. 1.—Form of the relation between exchange current at a hydrogen electrode and the standard free energy of adsorption of hydrogen on the electrode surface, assuming that the adsorbed atoms obey a Langmuir adsorption isotherm.

HER volcano

Active sites of hydrogen producing enzymes

nitrogenase active site

Einsle, Teczan, Andrade, Schmid, Yoshida, Howard, Rees, Science **2002**, *297*, 1696.

Hinnemann, Nørskov, JACS 126, 3920 (2004)

hydrogenase active site

Vollbeda, Fontecilla-Camps, Dalton Trans. 4030-3048 (2003).

Siegbahn, Blomberg, Wirstam, Crabtree Biol. Inorg. Chem. **6**, 460 (2001)

Biological hydrogen evolution

Chorkendorff, Nørskov, JACS 127 5308 (2005)

MoS₂ as HER catalyst

ITU

Hinnemann, Bonde, Jørgensen, Nielsen, Horch, Chorkendorff, Nørskov, JACS **127** 5308 (2005)

MoS_2 nanoparticles are metallic

1-layer slab:

Bollinger, Lauritsen, Jacobsen, Nørskov, Helveg, Besenbacher, Phys. Rev. Lett. **87**, 196803 (2001).

MoS₂ as HER catalyst

Hinnemann, Bonde, Jørgensen, Nielsen, Horch, Chorkendorff, Nørskov, JACS **127** 5308 (2005)

ITU

Electrolysis

Cathode: $2(H^++e^-) \rightarrow H_2$

Anode: $H_2O \rightarrow \frac{1}{2}O_2 + 2H^+$

Total: $H_2O \rightarrow \frac{1}{2}O_2 + H_2$

 $\Delta G^0 = 2.46 \text{ eV} (1.23 \text{ eV/electron})$

Rossmeisl, Logadottir, Nørskov, J. Chem. Phys. 319, 178 (2005)

Wang, Ebner, Zidan, Ritter, J.Alloys & Comp. 391 (2005) 245

Catalyzed formation/decomposition of NaAlH₄

 $NaAIH_4(001)$

Ti@NaAlH₄(001)+2Na^v

T. Vegge:

TiCl₃ as catalyst:

- lowers the H_2 desorption barrier
- Na/H-vacancy formation energy
- driving force: NaCl formation
- Ti- has long range effects

Separating storage and catalyst

Storage + catalyst

Separating storage and catalyst

One possibility: Use metal ammine complexes

Christensen. Sørensen, Johannessen, Quaade, Honkala, Elmøe, Køhler, Nørskov, J. Mater. Chem **15**, 1406 (2005)

Catalyzed synthesis/decomposition of ammonia

Honkala, Remediakis, Logadottir, Nørskov, Hellmann, Dahl, Carlsson, Christensen, Science **307**,555 (2005)

Boisen, Dahl, Nørskov, Christensen, J. Catal 230, 318 (2005)

Metal ammine chemistry – the MgCl₂-NH₃ system

 $MgCl_2(s) + NH_3(g) \Longrightarrow Mg(NH_3)Cl_2(s), \quad \Delta H = 87.0 \, kJ \, / \, mol \, NH_3$

 $Mg(NH_3)Cl_2(s) + NH_3(g) \Longrightarrow Mg(NH_3)_2Cl_2(s), \quad \Delta H = 74.9 \, kJ \,/ \, mol \, NH_3$

 $Mg(NH_3)_2Cl_2(s) + 4NH_3(g) \Longrightarrow Mg(NH_3)_6Cl_2(s), \quad \Delta H = 55.6 \, kJ \,/ \, mol \, NH_3$

Average desorption enthalpy: $42.7 \frac{kJ}{mol H_2}$

A. Werner, "On the constitution and configuration of higher-order compounds", 1913.

E. Lepinasse and B. Spinner, Rev. Int. Froid, 1994, 17, 309.

325 kg/m^3 ;	40,9 cm ³ /mol
252 kg/m^3 ;	157,4 cm ³ /mol
	325 kg/m ³ ; 252 kg/m ³ ;

The ammonia content $Mg(NH_3)_6Cl_2$:38.1 kmol NH_3/m^3 Liquid ammonia:40.1 kmol NH_3/m^3

Thermal decomposition

Christensen. Sørensen, Johannessen, Quaade, Honkala, Elmøe, Køhler, Nørskov, J. Mater. Chem **15**, 1406 (2005)

Decomposition of $Mg(NH_3)_6Cl_2$

Bonding in metal ammines

MgCl₂ in Mg(NH₃)₆Cl₂ structure

H₃-N

Hummelshøj, Vegge, Nørskov (2006)

Diffusion in metal ammines

Hummelshøj, Vegge, Nørskov (2006)

Pore development in dense ammine units

Nørskov, Christensen, JACS 16, 66 (2006)

DTU

Data from: Lepinasse, Spinner, Rev. Int. Froid 17, 309 (1994)

Catalysis in hydrogen production and storage

- Catalysis in hydrogen production
 - Understanding of trends in hydrogen and oxygen evolution
 - Towards computational design
 - Inspiration from nature

- Catalysis in hydrogen storage
 - H₂ activation important
 - Alternative combinations of storage medium and catalyst

