On the magnetic properties of cobalt ferrite nano particles

Arif Mumtaz Dept. of Physics Quaid-i-Azam University Islamabad, PAKISTAN

Magnetism and Magnetic Materials Lab at Quaid-i-Azam University

- What we Have
- Resistivity down to 10k
- Magnetometer 77K, 20 KOe
- XRD
- AC susceptibility 77K, H_{dc} up to 6KOe
- Furnace 1600 C

- What we'll Have
- MPMS (Quantum Design)
 - Magnetic and transport properties measurement system
- Thin film Laser ablation
- Single crystal growth facility

Syntheses of the nanocrystals

We synthesis magnetic nanoparticles

- Ferrites e.g, CoFe2O4
- Fe_2O_3
- Manganite Rare earth perovoskite $La_{1-x}Ca_{x}MnO_{3}$ Commonly called CMR

Sol Gel Normal micelle Reverse micelle

Nanoparticles exhibit size dependent properties that are profoundly different from the corresponding bulk material.

Electrical	higher electrical conductivity in ceramics and magnetic nanocomposites; higher resistivity in metals
Magnetic	increase in magnetic coercivity down to a critical size in the nanoscale regime; below critical crystalline size, decrease in the coersivity leading to the superparamagnetic behavior
Mechanical	increase in hardness and strength of metals and alloys; enhanced ductility, toughness and formability of ceramics; super strength and superplasticity
Optical	blue shift of optical spectra of quantum-confined crystallites; increase in luminescent efficiency of semiconductors
Chemical	fundamental understanding of heterogeneous catalytic properties

Size control is achieved either by annealing or by changing PH

Hysteresis Loop

Variation of saturation magnetization with size

Variation of H_c with Particle size

Magnetization Loops

Mumtaz et al. 2005, J. Magn. Magn. Mater (Submitted)

Points to Note

Asymmetry in the field axis

Vertical shift

Hex = (Hc2 + Hc1)/2

Size dependence

Exchange Anisotropy

1. F-layer saturation in positive field

1. F-layer saturation in positive field

2. F-layer saturation hysteresis w/o field cooling

- 1. F-layer saturation in positive field
- 2. F-layer hysteresis w/o field cooling
- 3. F-layer hysteresis after field cooling

Exchange bias field:

$$H_{EB} = \frac{H_{c2} + H_{c1}}{2}$$

10

Figure 2: Abdullah Ceylan, C.C. Baker, S. K. Hasanain and S. Ismat Shah

Effects of the cooling Field

Training Effect

Why Study Exchange Bias

- Pinning of FM layer by an AFM layer is important for spintronic device application
 - Current read heads in hard-drives use exchange bias
 - Future MRAMs would use a similar architecture
 - Key Issues

What is the role of interface

How the spin structure transform after cycling

- $R_t \alpha (1+P^2m^2) \exp(\Delta/T)^{1/2}$
- Where P is the spin polarization, m=M/Ms is the relative magnetization and Δ is proportional to the coulomb charging energy and barrier thickness

Magnetism and Magnetic Materials Group

