Multiferroic and magnetoelectric materials

Maxim Mostovoy

University of Groningen

Zernike Institute for Advanced Materials

ICMR Summer School on Multiferroics

Santa Barbara 2008

Outline

- Ferroelectric properties of magnetic defects
- Toroidal moment and magnetoelectric effect
- Electromagnons

Electrostatics of magnetic defectsEasy plane spins: $\mathbf{M} = M \left[\mathbf{e}_1 \cos \varphi + \mathbf{e}_2 \sin \varphi \right]$ Polarization: $P_a = -\gamma \chi_e M^2 \varepsilon_{3ab} \partial_b \varphi$

Total polarization of domain wall:

$$\int dx P_{y} = \gamma \chi_{e} M^{2} [\varphi(+\infty) - \varphi(-\infty)]$$

Charge density: $\rho = -\text{div}\mathbf{P} = 2\pi\gamma\chi_e M^2\Gamma\delta^{(2)}(\mathbf{x}_{\perp})$

Vortex charge: $Q \propto \Gamma = \frac{1}{2\pi} \oint_C d\mathbf{x} \cdot \nabla \varphi$ winding number

Magnetic vortex in magnetic field

Magnetic vortex in magnetic field

Array of magnetic vortices is magnetoelectric

Outline

- Ferroelectric properties of magnetic defects
- Toroidal moment and magnetoelectric effect
- Electromagnons

Multipole expansion

Average vector potential

$$\mathbf{A}(\mathbf{R}) = \frac{1}{c} \int d^3 r \, \frac{\mathbf{j}(\mathbf{r})}{|\mathbf{r} - \mathbf{R}|}$$

 $\mathbf{A}(\mathbf{R})$

Magnetic dipole moment

$$\mathbf{A}^{(1)} = -\mathbf{M} \times \nabla \frac{1}{R}$$

$$\mathbf{M} = \frac{1}{2c} \int d^3 r \, \mathbf{r} \times \mathbf{j}$$

Quadrupole and toroidal moments

Quadrupole moment

$$A_{i}^{(2)} = -\mathcal{E}_{ijk}Q_{kl}\partial_{j}\partial_{l}\frac{1}{R}$$
$$Q_{ij} = \frac{1}{6c}\int d^{3}r \left([\mathbf{r} \times \mathbf{j}]_{i}r_{j} + [\mathbf{r} \times \mathbf{j}]_{j}r_{i} \right)$$

Toroidal moment (not in textbooks)

$$\mathbf{A}^{(2)} = \nabla (\mathbf{T} \cdot \nabla) \frac{1}{R} + 4\pi \mathbf{T} \delta(\mathbf{R})$$
$$\mathbf{T} = \frac{1}{6c} \int d^3 r \, \mathbf{r} \times [\mathbf{r} \times \mathbf{j}]$$

Meaning of toroidal moment

$$\mathbf{T} = \frac{1}{6c} \int d^3 r \, \mathbf{r} \times [\mathbf{r} \times \mathbf{j}]$$

$$\mathbf{T} = \boldsymbol{\mu}_{B} \sum_{\alpha} \mathbf{r}_{\alpha} \times \mathbf{S}_{\alpha}$$

Spins interacting with inhomogeneous magnetic field

$$E = -2\mu_{B}\sum_{\alpha}\mathbf{S}_{\alpha}\cdot\mathbf{H}(\mathbf{r}_{\alpha})$$

 $\Gamma(0)$

Gradient expansion

$$E^{(1)} = -\mathbf{A}\nabla \mathbf{H} - \mathbf{T} \cdot \nabla \times \mathbf{H} - Q_{ij} \left(\partial_i H_j + \partial_j H_i\right)$$
$$A = -\frac{2}{3} \mu_B \sum_{\alpha} \mathbf{r}_{\alpha} \cdot \mathbf{S}_{\alpha}$$

Magnetoelectric properties of magnetic multipoles

$$\Phi_{\rm me} = -a \mathbf{E} \cdot \mathbf{H} - \mathbf{t} \cdot \mathbf{E} \times \mathbf{H} - q_{ij} \left(E_i H_j + E_j H_i \right)$$

$$\Phi_{H} = -A\nabla \cdot \mathbf{H} - \mathbf{T} \cdot \nabla \times \mathbf{H} - Q_{ij} \left(\partial_{i} H_{j} + \partial_{j} H_{i} \right)$$

The magnetic multipoles have the same symmetry as magnetoelectric tensor

$$a \propto A$$
 $\mathbf{t} \propto \mathbf{T}$ $q_{ij} \propto Q_{ij}$

Magnetoelectric effect

$$\mathbf{P} = -\frac{\partial \Phi_{\text{me}}}{\partial \mathbf{E}} = -\mathbf{T} \times \mathbf{H}$$
$$\mathbf{M} = -\frac{\partial \Phi_{\text{me}}}{\partial \mathbf{H}} = +\mathbf{T} \times \mathbf{E}$$

Magnetoelectric effect in spin triangle

Triangular lattice

Toroidal Kagome

layered Kagomé lattice

 $\alpha = \alpha_0 \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Magnetoelectric Coupling

• KITPITE: $\alpha = 3 \cdot 10^{-3}$ Gaussian units)

LDA+U Cris Delaney & Nicola Spaldin

• Cr_2O_3 $\alpha = 1 \cdot 10^{-4}$

Outline

- Ferroelectric properties of magnetic defects
- Toroidal moment and magnetoelectric effect
- Electromagnons

Phonon-magnon continuum

Photoexitation of magnons

H. Katsura et al. (2006)

Magnons in spiral state of RMnO₃

Electromagnon mode

$Eu_{1-x}Y_{x}MnO_{3}$ ab spiral $E \parallel a$

Magnons in spiral state of RMnO₃

Conclusions

 Magnetic frustration gives rise to unusual spin orders that break inversion symmetry and give rise to multiferroic behavior and linear magnetoelectric effect