Issues in Photobiological Hydrogen Production

Tasios Melis University of California, Berkeley

Biological catalysis

Hydrogen

Sunlight

- Clean
- Unlimited
 - Diffuse

 $(5 \text{ kWh m}^{-2} \text{ d}^{-1})$

(US household consumption: 12.5 kWh d⁻¹)

Green algae and photosynthetic bacteria could operate with a solar to H_2 conversion efficiency as high as ~14% and ~8%, respectively, provided that specific issues can be overcome.

Hydrogen production reactions

Green algal Fe-hydrogenase

$$2H^+ + 2FD^- \rightarrow H_2 + 2FD$$

Photosynthetic bacterial nitrogenase

$$N_2 + 8e^- + 8H^+ + 16ATP \rightarrow$$
 $2NH_3 + H_2 + 16ADP + 16Pi$

Issues in photobiological H_2 -production (green algae and photosynthetic bacteria)

- <u>Photon conversion efficiency</u> in green microalgae and photosynthetic bacteria is low under bright sunlight.
- Oxygen sensitivity of the green algal H_2 -production process. O_2 and H_2 are mutually exclusive.
- Utilization of both visible and near infrared in photobiological H₂-production (process integration).

Microalgae: factories of photosynthesis

- Fast growth (doubling of biomass per day).
- Source of lipids, protein, vitamins and more.
- Non-toxic, non-polluting.
- Seen by many as the ultimate approach to environmentally friendly energy generation.

The Unicellular Green Alga Chlamydomonas reinhardtii

Photosynthetic H₂O oxidation and <u>ATP-NADPH generation</u>

Issues in photobiological H₂-production

- Photon conversion efficiency in green microalgae and photobacteria.
- The O₂ sensitivity of green algal H₂-production.
- Utilization of both visible and near infrared in photobiological H₂-production.

Profile of daily solar PAR

A pilot mini scale-up experiment

Cultures in the Greenhouse

<u>Parameter</u>	<u>WT</u>	<u>tla1</u>
Cell/mL (x10 ⁶)	6.36	10.0
[Chl] (uM)	25.6	15.4

Fully pigmented cells over-absorb and wastefully dissipate bright sunlight.

Truncated ChI antenna cells permit greater transmittance of light and overall better solar utilization by the culture.

Chlorophyll antenna size in Chlamydomonas reinhardtii

A pilot mini scale-up experiment

Cultures in the Greenhouse

<u>Parameter</u>	<u>WT</u>	<u>tla1</u>
Cell/mL (x10 ⁶)	6.36	10.0
[Chl] (uM)	25.6	15.4

Issues in photobiological H₂-production

- Photon conversion efficiency in green microalgae and photobacteria.
- The O_2 sensitivity of green algal H_2 production.
- Utilization of both visible and near infrared in photobiological H₂-production.

Photosynthetic nanocircuit for H₂O-oxidation and H₂-production

~3,000,000 electron transport circuits per cell, each capable of transporting 100 electrons per second

The adverse effect of oxygen on H₂-metabolism

- Oxygen is a positive suppressor of *hydrogenase* gene expression and a powerful inhibitor of the enzyme.
- This incompatibility in the simultaneous O_2 and H_2 photo-evolution persisted in 60-years of green algal hydrogen research.

The slow-down is specific to H_2O -oxidation and O_2 -evolution. Respiration is not affected.

Time in S-deprivation, h

H₂ gas accumulation commences promptly upon anaerobiosis in the culture.

Attenuated photosynthesis: O₂ is consumed by mitochondria

A solution to the O_2 problem

- Employ the cell's own respiration to consume O_2 produced by photosynthesis.
- Genetically, attenuate sulfur nutrient uptake by the chloroplast.

The C. reinhardtii chloroplast Sulfate Permease is an ABC-type transporter

Planta (2003) 218: 98-106

Planta (2004) 220: 198-210

Photosynth Res (2005) 84: 289-296

Performance characteristics (400 µM sulfate)

Wild type C. reinhardtii

- Photosynthesis = $44 \mu mol O_2/mol Chl/s$
- Respiration = -12 μ mol O₂/mol Chl/s

antisulP-29 transformant

- Photosynthesis = 24 μ mol O₂/mol Chl/s
- Respiration = -12 μ mol O₂/mol Chl/s

Conclusion

A balanced capacity of Photosynthesis and Respiration facilitates anaerobic conditions and spontaneous H₂-production.

Issues in photobiological H₂-production

- Photon conversion efficiency in green microalgae and photobacteria.
- The O_2 sensitivity of green algal H_2 production.
- Utilization of both visible and near infrared in photobiological H₂-production.

Rhodospirillum rubrum Hydrogen Production

H₂-producing green algae H₂-producing photo bacteria

H₂-producing green algae H₂-producing photo bacteria

Co-cultivation of a photosynthetic bacterium-green alga at 6:4 and 2:8 ratios

The promise of photobiological H₂-production

- **♦ 10 billion kWh are consumed in the US daily**
- 8,000 sq. miles needed to meet daily electricity consumption in the US
- **★ 400 million gallons gasoline are consumed daily**
- **★** 15,000 sq. miles needed to meet daily gasoline consumption in the US

Acknowledgment Support by the DOE HFC&IT program

The Adverse Effect of Oxygen on Photosystem-II

• Reactive singlet oxygen is generated at PSII in the course of photosynthesis:

$$(^{3}O_{2}^{*}P_{680}^{} ---> ^{1}O_{2}P_{680}^{} ---> inactivation of P_{680}^{})$$

• Reactive singlet oxygen causes irreversible inactivation of P_{680} and stop PSII photochemistry.

In -S media, the rate of photosynthesis drops to ~10% of the control

Growth aided by external organic carbon

Physiology of starch metabolism before and during H_2 production: Substrate catabolism is essential for H_2 production.

