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Sunlight

e Clean
e Unlimited
e Diffuse

(5 kWh m?2 d-)
(US household consumption: 12.5 kWh d-1)
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H,-production by the i H,-production by the
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Green algae and photosynthetic bacteria could operate with a solar to H,
conversion efficiency as high as ~14% and ~8%, respectively, provided
that specific issues can be overcome.




Hydrogen production reactions

Green algal Fe-hydrogenase

2H* +2FD — H, +2FD

Photosynthetic bacterial nifrogenase

N, + 8¢ + SH* +16ATP —
2NH, + H, + 16ADP + 16Pi




Issues in photobiological H,-production
(green algae and photosynthetic bacteria)

Photon conversion efficiency in green microalgae and
photosynthetic bacteria is low under bright sunlight.

Oxygen sensitivity of the green algal H,-production
process. O, and H, are mutually exclusive.

Utilization of both visible and near infrared in photo-
biological H,-production (process integration).




Microalgae:
factories of photosynthesis

Fast growth (doubling of biomass per day).
Source of lipids, protein, vitamins and more.
Non-toxic, non-polluting.

Seen by many as the ultimate approach to
environmentally friendly energy generation.
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Photosynthetic H,O oxidation and ATP-NADPH generation

~3,000,000 electron transport
circuits per cell, each
capable of transporting
100 electrons per second




Issues in photobiological H,-production

 Photon conversion efficiency in green
microalgae and photobacteria.




Profile of daily solar PAR
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A pilot mini scale-up experiment

Cultures 1n the Greenhouse
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Example: The green algae
Fully Pigmented H Chlamydomonas reinhardtii

Bright
Sunlight

Heat dissipation

Fully pigmented cells over-absorb and wastefully dissipate bright sunlight. ‘

Example: Truncated
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Truncated Chl antenna cells permit greater transmittance of light and
overall better solar utilization by the culture.




Chlorophyll antenna size in
Chlamydomonas reinhardtii
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A pilot mini scale-up experiment

Cultures 1n the Greenhouse
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Issues in photobiological H,-production

* The O, sensitivity of green algal H,-
production.




Photosynthetic nanocircuit for H,0O-oxidation and H,-production
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~3,000,000 electron transport
circuits per cell, each
capable of transporting
100 electrons per second




The adverse effect of oxygen on
H,-metabolism

 Oxygen is a positive suppressor of hydrogenase
gene expression and a powerful inhibitor of the
enzyme.

e This incompatibility in the simultaneous O, and
H, photo-evolution persisted in 60-years of green
algal hydrogen research.
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The slow-down is specific to H,O-oxidation
and O,-evolution. Respiration is not affected.
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H, bubbles




H, gas collected, ml

H, gas accumulation commences promptly
upon anaerobiosis in the culture.
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Attenuated photosynthesis: O, is consumed by mitochondria
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A solution to the O, problem

 Employ the cell’s own respiration to consume
O, produced by photosynthesis.

e Genetically, attenuate sulfur nutrient uptake
by the chloroplast.
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The C. reinhardtii chloroplast Sulfate Permease
is an ABC-type transporter
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Performance characteristics
(400 uM sulfate)

Vild type C. reinhardtii
Photosynthesis = 44 umol O,/mol Chl/s
Respiration = -12 umol O,/mol Chl/s

antisulP-29 transformant
Photosynthesis = 24 umol O,/mol Chl/s
Respiration = -12 umol O,/mol Chl/s




H, gas production, ml

150 uM sulfate in the medium

Sealing of
cultures
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Conclusion

A balanced capacity of Photosynthesis and
Respiration facilitates anaerobic conditions
and spontaneous H,-production.




Issues in photobiological H,-production

e Utilization of both visible and near
infrared in photobiological H,-production.
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Rhodospirillum rubrumHydrogen Production
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Chlamydomoas reinhardtii
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Co-cultivation of a photosynthetic bacterium-green alga at 6:4 and 2:8 ratios



The promise of photobiological
H,-production

¢ 10 billion kWh are consumed in the US daily
¢ 8,000 sq. miles needed to meet
daily electricity consumption in the US

* 400 million gallons gasoline are consumed daily
* 15,000 sqg. miles needed to meet
daily gasoline consumption in the US
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The Adverse Etffect of Oxygen
on Photosystem-I1

* Reactive singlet oxygen is generated at PSII in the
course of photosynthesis:

(0, Pyqy > 10,P,, ---> inactivation of P )

* Reactive singlet oxygen causes irreversible
inactivation of P.g, and stop PSII photochemistry.



In -S media, the rate of photosynthesis
drops to ~10% of the control
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Growth aided by external organic carbon
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Physiology of starch metabolism before
and during H, production:
Substrate catabolism is essential for H, production.
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