Mineral Morphologies

Fiona Meldrum

School of Chemistry, University of Bristol, UK

Biomineralisation

AMORPHOUS

POLYCRYSTALLINE

SINGLE CRYSTAL

Introduction

Routes to Controlling Crystal Morphologies:

- Additives to control single crystal morphologies
- Additives to produce polycrystalline structures
 ⇒ Oriented and non-oriented
- Templating to control production :
- \Rightarrow Nanoparticles
- \Rightarrow Polycrystalline structures with complex morphologies
- \Rightarrow Single crystals with complex morphologies

Additives to Control Single Crystal Morphologies Calcite Precipitation in the Presence of α, ω -Dicarboxylates

- Influence of subtle changes in additive structure studied
- * Malonic acid (n = 1) was the most effective \Rightarrow effect reduced with increasing chain length

Control

Ca/malonate 1:3

capped with rhombohedral {104} end faces

elongated parallel to the *c*-axis

> curved {1-10} faces

Mann, Didymus, et al J. Chem. Soc. Faraday Trans., 1990, 86, 1873-1880

• Morphological changes were considered in terms of molecular recognition between the crystal face and additive

• Calcite crystal faces parallel to the *c*-axis have carbonate groups oriented perpendicular to the face

• These faces may be stabilised via stereoselective adsorption of the acids via bidentate binding of the carboxylate groups

Cooperative binding of the carboxylate groups may occur in the case of the short-chain additives

The carboxylate groups in the longer-chain additives behave independently

(I-10) face of calcite showing possible malonate binding site

Acidic Peptides as Growth Modifiers

Acidic proteins extracted from biogenic $CaCO_3$ often comprise alternating Asp or Glu residues and more hydrophobic residues.

 \Rightarrow Mimic this structure / use as calcite growth modifier

Volkmer, Fricke, Huber, Sewald Chem. Commun. (2004), 1872-1873

{01.2} and {11.0} faces have few common features in terms of symmetry or electrostatics

Also, polymer additives very flexible

 \Rightarrow Seems unlikely these faces are selected on the basis of stereochemical or geometrical recognition

Additives to Control Polycrystalline Particle Morphologies

Higher concentration of additives

⇒ Observe transition from single crystal to polycrystalline structure

 \Rightarrow Can obtain unusual morphologies

Polycrystalline particles frequently form by aggregation

- \Rightarrow Can be disordered or oriented
- \Rightarrow Aggregation can be mediated by additives

Aggregation-Based Crystal Growth

In natural systems (biology, geology), crystal growth traditionally considered to occur by:

1 Atom-by-atom addition

2 Dissolution of unstable phases and reprecipitation as more stable phases

However...

There is growing evidence that self-assembly based mechanisms may also be very widespread

Nanosized particles can also provide the building blocks for the growth of ordered solids

Alivisatos *Science* 2000, 289, 736-737.

Growth by Aggregation

Nanocrystal growth in solution typically involves the fast nucleation of primary particles, followed by growth by:

- Coarsening
- Aggregation

Oriented aggregation provides a special case

RL Penn J Phys Chem B 2004, 108, 12707-12712.

Nanocrystalline Titania Aggregates

Penn and Banfield Geochim Cosmochim Acta 1999, 63(10), 1549-1557.

 TiO_2 particles aggregate on high energy faces to produce elongated single crystals

Diblock Copolymers as Growth Additives

- Highly versatile in controlling crystal growth
- Used to produce homogeneous particle populations
- Particles of controlled morphologies
- Unusual highly-ordered polycrystalline structures
- Hierarchically ordered structures

CaCO₃ Hollow Spheres

PEG-b-PMAA, ammonia diffusion

- Vaterite nanospheres aggregate
- Transformation to calcite starts on the surface – calcite rhombohedra form on particle surface
- Continue to grow at expense of dissolving vaterite

Yu, Cölfen, Hartmann, Antonietti, Adv. Mater. 2002, 12, 541.

Control of BaSO₄ Precipitation

Qi, Cölfen, Antonietti, Chem. Mater. 2000, 12, 2392-2403

Formation of BaSO₄ "Flowers"

$BaSO_4$ with PEG-b-PEI-SO₃H additive, pH 5

- Flower-like structures with 10 petals
- Angles between petals almost equal
- Petals are overgrown
- Petals are single crystals with the same faces

Cölfen, Qi, Mastai, Börger, Cryst. Growth Des. (2002), 2(3), 191-196.

Mechanism of Formation

ED of thin section

 \Rightarrow (400) reflection much more intense than expected

⇒ suggests possible exposed (200)/(400) faces

Polymer adsorption preferred on (200)/(400) faces

Ring	d (Å)	Plane	Atomar surface structure
1	3.852	111	
2	3.510	200	
3	2.772	002	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4	2.340	022	ante atra ante atra atra
5	2.170	140	Storage
6	2.106	041	EX Approximation of the second s
7	1.769	400	As 200

Possible morphology of barite crystal

ED of single crystal "petal" ⇒ elongated along c-axis

Dark field image constructed using (200) reflection

Petals do not grow epitaxially on underlying crystal

- \Rightarrow Dark field TEM
- \Rightarrow Equal separation of petals

Formation of primary nanocrystal

Polymers are adsorbed at 200/400 onto primary nanocrystal

Heterogeneous secondary growth at remaining 10 faces, Initial steric repulsion between petals, Reorientation to maximum distance

Overgrowth of petals

Observed defects: a) Nucleation of two

- petals on one side
- b) Crystallization at defects on petals

BaSO₄ Fibres

pH = 5 $PEG-b-PMAA-PO_{3}H_{2}$

Bundles of single crystalline fibers

Parallel cut to fibre axis ⇒ [210]

Perpendicular cut to fibre axis Diameter 20 - 30 nm

Qi, Cölfen, Antonietti, Chem. Mater. 2000, 12, 2392-2403

BaSO₄ Fibers Obtained on Carbon Films

$PEG-b-PMAA-PO_3H_2$, 5 days, pH = 5

- Heterogeneous nucleation on carbon films
- Perfectly flat surface of growth edge

Qi et al Chem. Eur. J. (2001) 7(16), 3526-3532.

Mechanism of Fibre-Formation

- Form via amorphous BaSO₄ precursor particles
- * Aggregate to form clusters \Rightarrow start to crystallise
- Anionic polymer chains absorb to positively charged crystal faces

Different charges on different faces, and different shielding due to polymer adsorption may cause directional aggregation

CaCO₃ Mesocrystals

[Ca²⁺] 1.25 mM

[Ca²⁺]

2.5 mM

[Ca²⁺]

5.0 mM

[PSS] = 1.0 g/L [PSS] = 0.5 g/L [PSS] = 0.1 g/L

Wang, Cölfen, Antionetti, J. Am. Chem. Soc (2005), 127, 3246-3247.

CaCO₃ Mesocrystals

[Ca²⁺] = 5 mM 7 hr

[PSS] = 1 g/L

[PSS] = 0.1 g/L

- Morphology like single crystal
- Extinguish under crossed polars as single crystal

Mechanism

- Amorphous CaCO₃ precursor particles
- ACC particles aggregate and crystallise
- Crystal units assemble to form "mesocrystals"

• PSS is selectively adsorbed on positive (001) faces of nanocrystals

- Adsorption of negative species to opposite surface is prevented by dielectric interaction throughout the crystal
- Resulting dipole along the *c*-axis drives nanoparticle assembly

A dipole is induced in the very thin platelets which have exposed (001) faces

 \Rightarrow Two oppositely charged faces produced, which drives aggregation

Sulphonate Functionalised Copolymers

Gel-Grown Calcite Aggregates

Calcite crystals grown in pol-acrylamide hydrogels using double diffusion \Rightarrow Remarkable crystal aggregates formed

Diffraction shows entire aggregate behaves as a single crystal !

Grassman et al, Am. Mineral. 2003, 88, 647-652.

Mechanism

- Supersaturation is high in the gel \Rightarrow nucleation burst occurs
- Some nuclei grow by adsorption of ions to reach a supercritical size
- Further growth can then occur by adsorption of clusters to the large faces of the particle \Rightarrow reduces the surface energy of the face

⇒ Pseudo-octahedral morphology results

Templating Routes to Nanoparticles

Many examples:

- Crystallisation in micelles
- Crystallisation in vesicles
- Polymer capsules

Look at two examples profiting from biological structures:

- Crystallisation in ferritin
- Crystallisation in viruses

Synthesis of Nanoparticles within Ferritin

Ferritin is a uniquely stable protein \Rightarrow can be used as a reaction vessel in which to synthesise a range of inorganic particles

Meldrum, Wade, Nimmo, Heywood, Mann (1991) Nature 349, 684-687.

Formation of MnOOH Cores

Reconstitution of apoferritin with Mn(II) \Rightarrow alternative redox active metal

pH 8.9 - poorly ordered Mn oxide core formed over weeks

- Significantly more non-specific precipitation than in Fe(II) reconstitutions
- Cores always large, but only present in a proportion of ferritin molecules.
- Ferritin provides a nucleation site for MnOOH, but shows poor catalytic activity towards the oxidation of Mn(II)

Magnetite - "Magnetoferritin"

Modify reconstitution conditions with $Fe(II) \Rightarrow$ magnetite

- pH8.5
- slow oxidation

• 60°C

Meldrum F.C., Heywood B.R., Mann S. (1992) Science 257, 522-523.

Photocatalytic Synthesis of Copper Colloids in Ferritin

Mineralised ferritin can act as a photocatalyst for redox reactions

⇒ Ferrihydrite core may act a visible-band-gap semiconductor

Form Cu nanoparticles on photocatalytic reduction of Cu(II) in the presence of mineralised ferritin in the presence of a sacrificial reductant (citrate)

Ensign, Young, and Douglas Inorganic Chemistry, 2004, <u>43(11)</u>, 3441-3446

Mechanism

DLS indicates DISCRETE particles, sizes 36nm for 2000-Cu, 28nm for 1000-Cu and 16nm for 500-Cu

- \Rightarrow All LARGER than protein shell \Rightarrow DISRUPTION
- \Rightarrow Images suggest particles formed within protein shell

 $Cu^{2+}_{(inside)} \rightarrow Cu^{o}_{(s)} \qquad (1)$ $Cu^{2+}_{(inside)} + Cu^{o}_{(s)} \rightarrow Cu^{o}_{n(s)} (2)$

Slow nucleation is followed by fast growth

Nanoparticle Synthesis in Virus Protein Cages

Viruses act as host containers for nucleic acid storage and transport

Occur in wide range of sizes and morphologies

 \Rightarrow offer more versatile "protein reaction vessel" than ferritin

 \Rightarrow use virus cage in formation and entrapment of inorganic and organic polymer species

I Removal of viral RNA and purification of the empty virus particle

II Selective mineralization within the confines of the virus particle

Douglas and Young, Nature, 1998, <u>393</u>, 152-154.
Synthesis of Paratungstate Particles in Cowpea Chlorotic Mottle Virus (CCMV)

Many virions undergo reversible structural changes, that open up pores in the structure, giving access to the cage interior

CCMV in (a) Unswollen condition at low pH (b) Swollen condition at high pH.

Swelling causes formation of 60, 2nm pores

- CCMV \Rightarrow 28 nm outer, 18 nm inner diameter
- Positively charged interior/ outer surface not highly charged
- Inner surface provides unique chemical environment
- CCMV Swells pH > 6.5, reverses pH < 6.5

Douglas and Young, Nature, 1998, <u>393</u>, 152-154.

Paratungstate particles $(H_2W_{12}O_{42}^{10-})$ formed in virus host cage

- Aqueous molecular tungstate (WO_4^{2-}) species incubated with virus cage > pH 6.5
- Polymerisation induced by reduction in pH < 6.5

HRTEM image of part of a paratungstate core

Organization of Metallic Nanoparticles using Tobacco Mosaic Virus

External surfaces of TMV rods decorated with metal nonoparticles on chemical reduction of $[PtCl_6]^{2-}$ or $[AuCl_4]^-$ at low pH

Photochemical reduction of Ag(I) salts at pH 7 resulted in nucleation of Ag nanoparticles within the internal channel

Dujardin, Peet, Stubbs, Culver, and Mann Nano Lett. 3(3), (2003), 413-417.

Protein Engineering of Viral Cage

CCMV offers cationic cage interior \Rightarrow alter to provide a more versatile reaction vessel

CCMV protein coat genetically modified by replacing 9 basic residues at N-terminus with glutamic acid

 \Rightarrow Does not affect assembly, and interior surface becomes anionic

Iron oxide particles formed in modified CCMV protein shells

 \Rightarrow Lepidocrocite (γ -FeOOH)

Douglas, Strable, Willits, Aitouchen, Libera, Young Adv. Mater. 2002, 14 (6), 415-418.

Mechanism

- * Lepidocrocite (γ -FeOOH) formed same as in control reactions
- Negatively charged interior accumulate Fe(II) ions
- \Rightarrow Aggregation may change the redox potential of Fe(II)
- \Rightarrow Interior surface acts as a nucleation site by clustering Fe(II)/Fe(II) ions at the interface
- After nucleation, the initially formed crystallite can act as a catalytic site for further oxidative hydrolysis

Can form up to 24 nm cores - upper limit of virus cage

Templating Polycrystalline Structures

Large complex structures \Rightarrow currently cannot be produced via self-assembly techniques

Alternative method \Rightarrow Templating

Soft templates Rigid organic templates Inorganic templates

- eg microemulsions
- eg. pollen grains
- eg. sea urchin skeletal plates

eg diatoms

Templating Microemulsions

Spherical vaterite particles with sponge-like microstructures

⇒ Produced by evaporation of SDS/octane/supersaturated calcium bicarbonate solution water-in-oil microemulsions

• Typically show irregular surface depressions and pores

• Many highly porous with a perforated outer shell and a partially hollow centre,

Walsh, Lebeau, Mann, Adv. Mater. (1999), 11(4), 324-328

- Micro-emulsion solution contains micron-sized water droplets
- * Mineral aggregates initially form along the surface of water droplets \Rightarrow form perforated hollow shells with smooth surfaces

Complex Morphologies using Pollen Grain Templates

Hall SR, Bolger H, Mann S Chem. Commun. (22): 2784-2785 2003

Templating Sea Urchin Skeletal Plates

Sea urchin plates have a remarkable morphology – use as template for synthesis macroporous solids

- Urchin plate dipped in a solution of stabilised gold particles
- Annealed $CaCO_3$ dissolved \Rightarrow POROUS GOLD

Meldrum F.C., Seshadri R. Chem. Comm. (2000) 29-30.

Polymer Replica

Polymer template is readily dissolved in chloroform

Templating of TiO_2

Electrochemical Deposition

$\text{TiCl}_{4} \ \ \text{+} \ \ \text{2H}_{2}\text{O} \ \rightarrow \ \ \text{TiO}_{2} \ \ \text{+} \ \ \text{4HCl}$

Profiting from Biominerals Chemical Convertion of Diatoms

Shape-preserving conversion of SiO₂-based diatom frustrules into new structured materials

Diatoms \Rightarrow unique 3D morphologies, specific patterns of fine features \Rightarrow no synthetic analogues

Used as precursors to a range of ceramics including:

TiO₂, ZrO₂, BaTiO₃

Silica-based Aulacoseira diatom

3-D Nanoparticle Structures from Anatase

(a) Untreated diatom

(b) Exposure to TiF₄(g) 2h, 350°C TiF₄(g) + 2/3 SiO₂ (s) \rightarrow TiOF₂(s) + SiOF₂ (g)

(c) Exposure to $TiF_4(g)$ 2h at 350°C then pure O_2 for 2h at 350 °C.

 $\mathsf{TiOF}_2(s) + \frac{1}{2} O_2(g) \rightarrow \mathsf{TiO}_2(s) + \mathsf{F}_2(g)$

(d) TEM image of cross-section of frustule after exposure to $TiF_4(g)$ for 2 h, 350 °C and then to O_2 for 2h at 350°C.

Unocic, Zalar, Sarosi, Cai, Sandhage Chem. Commun (2004), 796-797.

Replication of Diatom Structure in BaTiO₃

- (a) Diatom frustule
- (b) After reaction with Mg(g) for 1.5 h at 900 °C

 $2Mg(g) + SiO_2 (s) \rightarrow 2MgO(s) + {Si}$

(c) A MgO-bearing frustule coated with a BaTiO₃ sol-gel precursor and fired at 700 °C for 1.5 h.

Layer of tetragonal BaTiO₃ formed on underlying scaffold containing MgO, Si, Mg₂Si

(d) XRD analyses of (a) (b) and (c)

Weatherspoon, Allan, Hunt, Cai, Sandhage, Chem. Commun. (2005), 651–653.

Templating Routes to Single Crystals with Complex Morphologies

• Nature shows it is possible to produce <u>calcite</u> single crystals with complex morphologies (eg. sea urchin plates)

• Clearly cannot use simple additives to produce such morphologies

 \Rightarrow biology forms such complex forms within structured environments

• Is it possible to produce remarkable morphologies in the absence of complex biological mechanisms by shape constraint only ?

Consider a "Single Crystal"....

Now look at Biology...

Calcium Carbonate Precipitation in Sponge-Like Polymer Membrane

 $CaCO_3$ precipitation in sponge-like "sea urchin" membranes

- Double-diffusion method
- Mixing of Ca^{2+} and CO_3^{2-} in membrane results in precipitation of $CaCO_3$
- Product highly concentration-dependent

Park R.J., Meldrum F.C. (2002) Adv. Mater, 14, 1167-1169.

Polycrystalline Product

Reagents 0.1 M

⇒ evidence of templating⇒ Product polycrystalline

Single Crystal Product

Low concentration reagents (0.02 M) \Rightarrow single crystals formed !!

Growth Mechanism

Calcite and vaterite particles precipitated initially in 1:1 ratio 24 hrs \Rightarrow 75% particles calcite

Park R.J., Meldrum F.C. (2004) J. Mater. Chem. 14, 2291-2296.

Incubation Time	C : V Ratio	Particle Size µm
20 min	50%	20 - 30
1 hour	50%	60 - 80
2 hours	60%	90 - 110
1 day	75%	> 120
3 days	> 80%	> 120

Vaterite

Calcite

- Proportion of calcite to vaterite increases with time
- Dissolution of vaterite \Rightarrow reprecipitation as calcite
- Larger particles \Rightarrow transformation of vaterite to calcite

Summary

• Experiments demonstrate it is possible to produce calcite single crystals with complex morphologies synthetically

 \Rightarrow no elaborate control mechanisms are required

CONSTRAINT OF MORPHOLOGY IS SUFFICIENT

Can A Similar Route Be Used To Template Other Single Crystals ?

Barium Sulphate

- Product concentration dependent
- High conc (0.1 M) clearly polycrystalline
- Low conc (0.02 M) tends to templated single crystals

Strontium Sulphate

 0.02 M SrCl_2 for 24 hr

MANY SINGLE CRYSTALS

Sodium Chloride

NaCl crystals formed by evaporation of a saturated solution

Surfaces with Well-Defined Topography

- Construct SiO₂ or polystyrene particle monolayers
- $CaCO_3$ grown on monolayers

Nucleating Crystal Face Templated by Monolayer

Calcite crystals grow around particles \rightarrow shape of particles perfectly reproduced in single crystal

Influence of Particle Size

Templating successful in particle size range 5 μm to 50 nm

Continued Growth..

• Allow crystal growth to continue – see growth *through* the colloidal monolayer

• Particles become encapsulated within single crystals

Crystal Growth on Colloidal Multilayers

Can extend methodology to use colloidal multilayers and form crystals templated in 3D

Surfaces with Positive Curvature

• Surfaces of opposite curvature created by generating PDMS replica of particle monolayer

CaCO₃ precipitated on PDMS replica

... Templated Crystals Produced

• Again see replication of template pattern in crystal face

• As opposed to perfectly smooth surfaces, see evidence of defined crystal faces

... Mechanism

Polymer Film Templates

Using patterned polymer films to template crystal surfaces \Rightarrow Potential for structuring surfaces at small length scales

Sabine Ludwigs, Ulli Steiner, University of Cambridge
Patterning at Small Length Scales

Demixing of polymer blends and subsequent removal of one component polymer templates yields patterned films with structure sizes from 100 nm - 10 nm prepared.

porous polystyrene film prepared via spontaneous phase separation of a polystyrene / polymethylmethacrylate blend and selective removal of PMMA

Crystal Growth on Polymer Film

polymer

polymer

Crystals nucleate on the surface of the polymer film

• Removal of the crystals from the substrate reveals the crystal face which nucleated on the polymer film

• Separation of the polymer shows the crystal morphology to be templated by the polymer film

Continued Growth ... Through Pores in Polymer Film

Further crystal growth results in growth through the pores

- \Rightarrow Continued on other side of polymer film
- \Rightarrow Polymer film becomes incorporated in the crystal

Reminiscent of Abalone Nacre ?

Abalone polymer film

Synthetic polymer film

MINERAL BRIDGES

Structure of nanoporous polymer thin film and crystal growth through strongly resemble abalone nacre

 \Rightarrow Further vindication for this model?

High Aspect Ratio Crystal via Patterning with Polymer Thin Film

Control of crystal growth using a polymer mask. Directional growth in the area not covered by the polymer (thin stripes), giving rise to a high aspect ratio morphology of the crystal.

Controlling Crystal Morphologies:

- Additives to control single crystal morphologies
- \Rightarrow Subtle changes in morphology/ mechanism controversial
- Additives to produce polycrystalline structures
- \Rightarrow Oriented and non-oriented structures
- \Rightarrow Block copolymers extremely versatile
- Templating to control production :
- \Rightarrow Nanoparticles / ferritin and virus cages
- \Rightarrow Polycrystalline structures with complex morphologies
- \Rightarrow Single crystals with complex morphologies
 - / simple templating sufficient!