Oxidation and Corrosion in High-Temperature Systems

G. H. Meier Department of Materials Science & Engineering University of Pittsburgh

ICMR Summer Program on Advanced Thermostructural Materials

August 14, 2006

Introduction

The rate of reaction between a reactive material and a gas is determined by the nature of the reaction product.

Thermodynamics

D's in Alloy, Ceramic

N. Birks, G. H. Meier, and F. S. Pettit, <u>Introduction to</u> <u>High Temperature Oxidation of Metals, 2nd Edition</u>, Cambridge University Press, Cambridge, 2006.

Thermomechanical

Oxidation and Corrosion of Metals and Alloys

- a. Review of thermodynamic principles
- b. Review of diffusion principles: point defects in metals and oxides
- c. Principles of oxidation and corrosion
 - Parabolic and transition from parabolic
 - External vs. internal oxidation (Selective oxidation)
 - Oxide adherence
 - Environmental influences in real systems (Evaporation, H₂O content, dual-atmosphere, pressure, breakaway corrosion, corrosion in multi component gases)
- d. Protective Coatings

Coating Fabrication

Coating Durability

Thermodynamic Principles

G' = H' - TS'

At constant temperature and pressure: $\Delta G' < 0$ spontaneous reaction expected $\Delta G' = 0$ equilibrium $\Delta G' > 0$ thermodynamically impossible process

aA + bB = cC + dD

$$\Delta G' = c\mu_C + d\mu_D - a\mu_A - b\mu_B$$
$$\mu_i = \mu_i^o + RT \ln a_i$$
$$\Delta G' = \Delta G^\circ + RT \ln \left(\frac{a_C^c a_D^d}{a_A^a a_B^b}\right)$$

$$a_i \equiv \frac{f_i}{f_i^o} \cong \frac{p_i}{p_i^\circ}$$

$$\Delta G^{o} = c \Delta G^{o}_{C} + d \Delta G^{o}_{D} - a \Delta G^{o}_{A} - b \Delta G^{o}_{B}$$

At equilibrium:

$$\Delta G^{\circ} = -RT \ln \left(\frac{a_{C}^{c} a_{D}^{d}}{a_{A}^{a} a_{B}^{b}} \right)_{eq} = -RT \ln K \qquad \text{``Law of Mass Action''}$$

Note: Free energy of formation data can be accessed either directly or as "Log $K_{P_{.}}$ The latter allows direct calculation of the equilibrium constant for the overall reaction.

Calculation of Activities in a Gaseous Environment

<u>Problem</u> A gas consisting of 60 vol % H₂ and 40 vol% CO₂ is let into a reaction chamber and heated to 1200K at a total pressure of 1 atm. Calculate the oxygen partial pressure and carbon activity in this gas when it comes to equilibrium.

Solution The common species which can form in such a gas mixture and their $\log K_P$ values at 1200K are listed in the following table.

<u>Species</u>	<u>log K</u> _P
CO_2	$17.24\overline{3}$
CO	9.479
H ₂ O	7.899
H_2^-	0.00

$$H_2(g) + CO_2(g) = H_2O(g) + CO(g)$$

$$\log K_{R} = \log K_{P}^{H_{2}O} + \log K_{P}^{CO} - \log K_{P}^{CO_{2}} = 0.135$$

$$K_R = 1.365 = \frac{p_{H_2O} p_{CO}}{p_{H_2} p_{CO_2}}$$

$$p_i = \frac{n_i}{n_{tot}} P_{tot}$$

$$K_R = 1.365 = \frac{n_{H_2O} n_{CO}}{n_{H_2} n_{CO_2}}$$

<u>Species</u>	Initial Comp. (moles)	Final Comp. (moles)
H_2	0.6	0.6-λ
$\overline{CO_2}$	0.4	0.4-λ
CO	0	λ
H ₂ O	0	λ

$$K_R = 1.365 = \frac{\lambda\lambda}{(0.6 - \lambda)(0.4 - \lambda)}$$

 $\lambda = 0.2575$ moles.

<u>Species</u>	<u>Final Comp. (moles)</u>	Partial Pressures (atm)
H_2	0.3425	0.3425
\overline{CO}_2	0.1425	0.1425
CO	0.2575	0.2575
H ₂ O	0.2575	0.2575

Calculation of Activities

Oxygen Partial Pressure

$$H_{2}(g) + 1/2O_{2}(g) = H_{2}O(g)$$
$$K_{p} = 7.924x10^{7} = \frac{p_{H_{2}O}}{p_{H_{2}}p_{O_{2}}^{1/2}} = \frac{0.2575}{0.3425p_{O_{2}}^{1/2}}$$
$$p_{O_{2}} = 9.0x10^{-18} atm$$

<u>Carbon Activity</u> $2CO(g) = CO_2(g) + C(s)$ $\log K_R = \log K_P^{CO_2} - 2\log K_P^{CO} = -1.715$ $K_R = 0.193 = \frac{p_{CO_2}a_C}{p_{CO}^2} = \frac{0.1425a_C}{(0.2575)^2}$ $a_C = 0.009$ Will this gas with $p_{O_2} = 9.0 \times 10^{-18} atm$ oxidize Ni or Cr? $Ni(s) + \frac{1}{2}O_{2}(g) = NiO(s)$ $Log K_p = 5.75$ $K_P = \frac{1}{p_{O_2}^{\frac{1}{2}}} = 5.6x10^5$ $p_{O_2}^{eq} = 3.2 x 10^{-12} atm$

Ni cannot oxidize

$$2Cr(s) + \frac{3}{2}O_2(g) = Cr_2O_3(s)$$

 $p_{O_2}^{eq} = 1.2x10^{-24} atm$
Cr will tend to oxidize

Ellingham (Richardson) Diagram

Ellingham (Richardson) Diagram

Isothermal Stability (Ellingham) Diagram

Ni-S-O System, 1250K

Ternary – Type 1 Diagram

Generalized "Phase Diagrams"

Gibbs Phase Rule: F = C - P + 2

Combined 1st and 2nd Laws

$$dU' = TdS' - PdV' + \mu_1 dn_1 + \mu_2 dn_2 + \mu_3 dn_3$$
$$\mu_i \equiv \left(\frac{\partial U'}{\partial n_i}\right)_{S', V', n_j} = \overline{G}_i$$

T, P, μ_i = potentials (ϕ)

S[/], V[/], n_i = conjugate extensive variables (q)

Type 1:	$\phi_{i} \text{ VS } \phi_{j}$	Invariant Equilibria = "point"
Type 2:	φ vs q _i /q _j	Invariant Equilibria = "line"
Type 3:	q _i /q _k vs q _j /q _k	Invariant Equilibria = "area"

Pelton, A. D. and Schmalzried, H., Met. Trans., 4, (1973) 1395.

Fe-O Isobaric Diagram

Binary – Type 2 Diagram

Fe-Cr-O Isothermal Diagram Ternary – Type 2 Diagram

Fe-Cr-O Isothermal Section

Solution Thermodynamics

Solution Thermodynamics

 $\begin{array}{ll} a_i = N_i & \mbox{Ideal Solution} \\ a_i = \gamma_i N_i & \mbox{Real Solution}, \ \gamma_i = f(N_i) \\ a_i = \gamma_i(\infty) N_i & \mbox{Dilute Solution}, \ \gamma_i(\infty) = \mbox{constant} \end{array}$

Sievert's Law

Consider Hydrogen Dissolving into Nickel

$$\frac{1}{2}H_2(g) = \underline{H}(inNi)$$

$$K = \frac{a_{H}}{p_{H_{2}}^{1/2}} = \frac{\gamma_{H}(\infty)N_{H}}{p_{H_{2}}^{1/2}}$$

$$N_{H} = \frac{K}{\gamma_{H}(\infty)} p_{H_{2}}^{1/2} = k_{S} p_{H_{2}}^{1/2}$$

Oxide Evaporation

Chromia Evaporation

 $Cr_2O_3(s) + \frac{3}{2}O_2(g) = 2CrO_3(g)$

$$p_{CrO_3} = K^{\frac{1}{2}} a_{cr_2O_3}^{\frac{1}{2}} p_{O_2}^{\frac{3}{4}}$$

CHROMIA

• At high T and high PO₂ volatile oxides develop

 $Cr_2O_3 + 3/2 O_2 \rightarrow 2 CrO_3(g)$ $Cr_2O_3 + 2 H_2O + 3/2 O_2 \rightarrow 2 CrO_2(OH)_2$

Vapor Species Diagrams for the Al-O and Si-O Systems

AI – O 1473K

Si – O 1250K

Diffusion Fundamentals

$$J_B = -\widetilde{D} \frac{\partial C_B}{\partial x}$$

Fick's First law

$$\frac{\partial C_B}{\partial t} = \widetilde{D} \frac{\partial^2 C_B}{\partial x^2}$$

Fick's Second Law

Steady State Diffusion of H₂ Through Ni T=800°C

Fick's Second Law

Calculation of Local Flux

Point Defects in Semiconductors

Intrinsic and Extrinsic Elemental Semiconductors

Intrinsic:
$$n = p = K_i^{\circ} e^{-\frac{E_s}{2kT}}$$

Extrinsic: $np = K_i^{\circ} e^{-\frac{E_s}{kT}}$

-ionized native defects and dopants

Defects in Compounds (e.g. Oxides) Defect Notations

- **The main symbol:** The defect species, which may be an ion, indicated by the atomic symbol for the species, or a vacant lattice site, denoted by V.
- **The subscript:** Indicates the lattice or interstitial site, I, occupied by the defect.
- **The superscript:** Indicates the difference in charge at the defect site relative to the charge at that site in the perfect crystal. A dot is used for an extra positive charge, and a slash denotes an extra negative charge.

What charge where		
Cation vacancy in NaCl	V_{Na}^{\prime}	
Cation interstitial in AgBr	Agi	
Anion vacancy in MgO	V.	
Cation interstitial in Al ₂ O ₃	Al	
Ca ²⁺ substituted for Na ⁺ in NaCl	CaNa	
Mg ²⁺ substituted for Ti ⁴⁺ in TiO ₂	Mg ^{//}	
O^{2-} substituted for F^{-} in CaF_{2}	O'_F	

Examples of Kröger–Vink defect notation

Important Defects:

Vacancies (cations and anions) Interstitials Foreign atoms Electrons and holes Charged defects Various associated complexes

Conservation Rules

- **Conservation of mass:** Atoms are neither created nor destroyed within a system, but must be conserved
- **Conservation of charge:** The bulk of an ideal crystal is electrically neutral. Charged defects must be created in combinations that are electrically neutral. Matter can be added to or removed from a crystal only in electrically neutral combinations.
- **Conservation of structure** (lattice site ratios): The creation of lattice defects must not violate the inherent ratio of cation sites to anion sites in the structure. Thus cation and anion sites can be created or destroyed only in ratios that correspond to the stoichiometry of the compound (i.e., in electrically neutral combinations).
- **Conservation of electronic states:** The total number of electronic states in a system derives directly from the electronic states of the component atoms, and must be conserved.

Law of Mass Action is Applicable aA + bB = cC + dD $\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} = e^{-\frac{\Delta G^{\circ}}{bT}}$

Replace activities with concentrations

Stoichiometry and Defect Chemistry

Intrinsic Ionic Disorder is such that the stoichiometry of the compound is maintained.

Example: Schottky Disorder for the compound MX

$$Null = V'_M + V^{\bullet}_X$$
$$K_S = \left[V'_M\right] \left[V^{\bullet}_X\right]$$

Extrinsic lonic Disorder usually involves the addition of a dopant, but there are also cases where such disorder can be established by reactions of the compound with the gas and stoichiometry is not maintained.

Dopant

$$Al_2O_3 \xrightarrow{\text{NiO}} 2Al_{\text{Ni}}^{\bullet} + 3O_O^x + V_{\text{Ni}}''$$

Gas Reaction

$$\frac{1}{2}O_2 \xrightarrow{\text{NiO}} O_0^x + V_{\text{Ni}}'' + 2h^{\bullet}$$

Construction of a Kroger-Vink Diagram

Pure MX

No Dopant - Schottky Defects

$$\begin{bmatrix} V'_M \end{bmatrix} \begin{bmatrix} V_X^{\bullet} \end{bmatrix} = K_s$$
$$np = K_i$$

Equilibration with Atmosphere

$$\frac{\frac{1}{2}X_{2}(g) = X_{X}^{x} + V_{M}^{'} + h^{\bullet}}{K_{R}} = \frac{\left[V_{M}^{'}\right]p}{P_{X_{2}}^{\frac{1}{2}}}$$

Electrical Neutrality

$$n + \left[V'_M\right] = p + \left[V^\bullet_X\right]$$

 $K_{S} > K_{i}$

Growth of Oxides on Pure Metals

Focus on Diffusion-Controlled Growth

- 1. Simple Parabolic Oxidation Model
- 2. Effect of Oxygen Partial Pressure
- 3. Bulk vs. Grain Boundary Diffusion

Pure Ni exposed for 1 hour @ 1100°C

Overall reaction: $2M + O_2 = 2MO; \Delta G_{MO}^{\circ}$

Simplified Treatment of Diffusion-Controlled Oxidation

$$j_{M^{2+}} = -j_{V_M} = D_{V_M} \frac{C_{V_M} - C_{V_M}}{x}$$

$$j_{M^{2+}} = \frac{1}{V_{ox}} \frac{dx}{dt} = D_{V_M} \frac{C_{V_M}'' - C_{V_M}'}{x}$$

$$\frac{dx}{dt} = \frac{k'}{x}$$

$$k' = D_{V_M} V_{ox} (C_{V_M}'' - C_{V_M}')$$

$$x^2 = 2k't$$

Effect of oxygen partial pressure

(p-type oxide)

Effect of oxygen partial pressure

$$\frac{1}{2}O_2 = O_0^X + 2h' + V_{Ni}''$$

$$C_h^2 C_{V_{Ni''}} = K p_{O_2}^{1/2}$$

Electroneutrality Condition

$$C_h = 2C_{V_{Ni}''}$$

$$C_{V_{Ni}''} = const. p_{O_2}^{1/6}$$

General for p-type Scales

$$C_{V_M} = const. p_{O_2}^{1/n}$$

$$k' \propto \left[\left(p_{O_2}'' \right)^{1/n} - \left(p_{O_2}' \right)^{1/n} \right]$$

$$k' \propto \left(p_{O_2}'' \right)^{1/n}$$

Effect of oxygen partial pressure Oxidation of Co

Cross-section of Co oxidized in Air at 750°C

Effect of oxygen partial pressure

$$j_{M^{2*}} = \frac{1}{V_{ox}} \frac{dx}{dt} = D_{M_i} \frac{C'_{M_i} - C''_{M_i}}{x}$$

$$k' = D_{M_i} V_{ox} (C'_{M_i} - C''_{M_i})$$

$$ZnO = Zn_i^{"} + 2e' + \frac{1}{2}O_2$$

$$K_1' = C_{Zn_i^{"}}C_{e'}^2 p_{O_2}^{1/2}$$

$$2C_{Zn_i^{"}} = C_{e'}$$

$$K_1' = 4C_{Zn_i^{"}}^3 p_{O_2}^{1/2}$$

$$C_{Zn_i^{"}} = \left(K_1'/4\right)^{1/3} p_{O_2}^{-1/6} = const. p_{O_2}^{-1/6}$$

$$k'_{ZnO} = const. \left[\left(\frac{1}{p_{O_2}}\right)^{1/6} - \left(\frac{1}{p_{O_2}}\right)^{1/6} \right] \qquad k' \neq f(p_{O_2})$$

Pure Ni exposed for 1 hour @ 1100°C

Transport Paths - NiO

Oxidation of Chromium

Caplan, D. and Sproule, G. I., Oxid. Metals, 9 (1975) 459

Relative growth rates of several oxides

Selective Oxidation

The approach to developing high temperature corrosion resistance in alloys is to have the reactants, namely the alloy and the gas, form a reaction product that separates the reactants and that allows slow transport of the reactants through it.

Most environments encountered in practice contain some oxygen, hence protective barriers are usually α -Al₂O₃, Cr₂O₃ and SiO₂.

Ellingham (Richardson) Diagram

Internal Oxidation

T = 700 - 900°C

Mount

Internal oxidation zone

Cu-1 wt%Ti Alloy

Internal Oxidation Kinetics

Ni -1 wt%Cr - Dry Air T = 1000°C, t = 24h

Ni - 1wt% Al - Dry Air T = 1000°C, t = 24h

Apparent Oxygen Permeability in Ni

 J-W Park and C. J. Altstetter, Met. Trans. A, <u>18A</u>, 43 (1987) At 1000°C: N_o^(s)D_o = 4.2 x 10⁻¹² cm²/s

$$\left(N_{O}^{(S)}D_{O}\right)_{App.} = \left[\frac{X^{2}\nu N_{B}^{(o)}}{2t}\right] = \frac{0.75N_{B}^{(o)}X^{2}}{8.64x10^{4}s}$$

<u>Alloy</u>	<u>N</u> B	<u>Atmosphere</u>	<u>X (µm)</u>	<u>(N_OD_O)_{App} (cm²/s)</u>
Ni-1Cr	0.0113	Dry Air	42.9	1.8 x 10 ⁻¹²
Ni-1Al	0.0215	Dry Air	89.1	1.5 x 10 ⁻¹¹

Effect of Internal Oxide Morphology on Apparent Oxygen Permeability

F. H. Stott, G. C. Wood: Materials Science and Technology, <u>4</u>, 1072 (1988).

Cross-sections of Ni-8Cr-6Al oxidized @ 1100°C

Transition to External Scale Formation

Transition to External Scale Formation

Equating the molar flux of solute B to that required to create a critical volume fraction of oxide $\frac{fAdX}{V_m} = \left[\frac{AD_B}{V_m}\frac{\partial N_B}{\partial x}\right]dt$ $N_B^{(o)} > \left[\frac{\pi g^*}{2\nu}N_O^{(S)}\frac{D_OV_m}{D_BV_{ox}}\right]^{1/2}$

Maintaining the Growth of an External Scale

Equating the molar flux of solute B to that being required for oxide growth $J_{B} = \frac{D_{B}}{V_{m}} \left(\frac{\partial N_{B}}{\partial x}\right)_{x=0} = \frac{1}{v} \cdot \frac{1}{2} \cdot \frac{k_{p}^{1/2}}{M_{O}} t^{-1/2}$

$$N_B^{(o)} = \frac{V_m}{32\nu} \left(\frac{\pi k_p}{D_B}\right)^{1/2}$$

PWA 1484 oxidized at 1100°C

Effect of Temperature and AI Content on the Formation and Continued Growth of External Alumina on Ni-AI Alloys

PWA 1484 @ 700°C

700°C

Aluminum and chromium not selectively oxidized

Relative Growth Rates of Several Oxides

Isothermal Oxidation – RE Effect

Ecer, and Meier, Oxid. Of Metals, 1979 Singh, Ecer, and Meier, Oxid. Of Metals, 1982

Internal Oxidation of Impurities Crofer AL453

Oxide Vaporization

Oxide Vaporization

• Diffusion Process in Series with a Vaporization Process

$$\frac{dx}{dt} = \frac{k_p}{x} - k_v$$

• k_p is parabolic growth constant, k_v is vaporization constant. When oxide stops growing $\frac{dx}{dt} = 0$ $x_0 = \frac{k_p}{k_v}$

- causes increased metal consumption
- this effect increases with oxygen pressure, gas flow rate and temperature

Oxide Vaporization

Vapor Pressures of Some Oxides

Vapor Species Diagram for the Mo-O System T = 1250K

Vapor Species Diagram for the W-O System T = 1250K

Cyclic Oxidation

Effects of Alloy Depletion and Scale Spallation

Origins of Oxide Stress

- Growth Stresses stresses arising from the nature of the oxide growth process
- Thermal Stresses stresses arising form the thermal expansion mismatch between metal and oxide.
- Applied Loads

Stress Generation by Internal Oxidation

Thermal Stress

Origin of Thermal Stress

$$\varepsilon_{thermal}^{metal} = \alpha_{M} \Delta T \qquad \qquad \varepsilon_{thermal}^{Ox} = \alpha_{Ox} \Delta T \qquad \Delta T = T_{L} - T_{H}$$

$$\varepsilon_{mech}^{metal} = \frac{\sigma_{M} (1 - v_{M})}{E_{M}} \qquad \qquad \varepsilon_{mech}^{Ox} = \frac{\sigma_{Ox} (1 - v_{Ox})}{E_{Ox}}$$

$$\varepsilon_{thermal}^{metal} + \varepsilon_{mechanical}^{metal} = \varepsilon_{thermal}^{Ox} + \varepsilon_{mechanical}^{Ox}$$

$$\sigma_M t_M + 2\sigma_{Ox} t_{Ox} = 0$$
 Force Balance

$$\alpha_M \Delta T = \frac{2\sigma_{Ox} t_{Ox} (1 - \nu_M)}{t_M E_M} = \alpha_{Ox} \Delta T + \frac{\sigma_{Ox} (1 - \nu_{Ox})}{E_{Ox}}$$

$$\sigma_{Ox} = \frac{-(\alpha_{Ox} - \alpha_M)\Delta T}{\frac{2t_{Ox}(l - \nu_M)}{t_M E_M} + \frac{(l - \nu_{Ox})}{E_{Ox}}}$$

Timoshenko, S. P., J. Opt. Soc. Amer.,11 (1925) 233

$$\sigma_{Ox} = \frac{-E_{Ox}(\alpha_{Ox} - \alpha_M)\Delta T}{\left(l - \nu\right)\left(1 + 2\frac{t_{Ox}E_{Ox}}{t_M E_M}\right)} \qquad \text{If } \nu_{M} \approx \nu_{Ox}$$

Thermal Stress if $t_{Ox} \ll t_M$

$$\sigma_{Ox} = \frac{-E_{Ox}(\alpha_{Ox} - \alpha_M)\Delta T}{(l - \nu)}$$

Oxide Failure

Stored elastic energy of alumina $\approx f(s_{ox}, x_{ox})$

Fracture resistance of the alumina/alloy interface \approx f(morphology, composition)

Stresses in Oxides XRD Techniques

Stress from
$$d_{(hkl)} v. sin^2 \psi$$

$$\varepsilon_{\Psi} = \frac{d_{\Psi} - d_0}{d_0} = \frac{1}{2} s_2 (hkl) \sigma_o \sin^2 \psi + 2s_1 (hkl) \sigma_o$$
$$d_{\psi} = \frac{1}{2} s_2 \cdot \sigma_o \cdot d_o \cdot \sin^2 \psi + d_o (2s_1 \cdot \sigma_o + 1)$$

slope =
$$\frac{1}{2}s_2 \cdot \sigma_o \cdot d_o$$

Growth Stress Measurements, FIM/Rocking

Growth Stress Measurement for Alumina Formed on a Pt-Modified Aluminide Bond Coat at 1100°C

226 Rocking, (NI,Pt) aluminide, ridges removed, 100+24h @ 1100°C

Growth Stress = -0.3±0.1GPa After 124 h exposure

Response to Stresses

Example of Buckling

Polishing mark

Spallation of Alumina Scale by Buckling FeCrAl (TMP) oxidized at 1100°C for 120 hours.

Circular Buckles

FeCrAITi Cyclically Oxidized for 288h at 1100°C

Deformation of Crofer During Cyclic Oxidation

Effect of Sulfur and Reactive Element

Effect of Yttrium

Long Term Cyclic Oxidation Testing

Cyclic oxidation kinetics for several Ni-Cr-Al alloys exposed at 1100°C.

Reactive Element Effect for a Chromia Former

Cyclic Oxidation

Cyclic Oxidation Degradation and Breakaway

982°C 30 day cycles

• Alloys initially are Cr₂O₃-formers

230 0 AA HR-120 Mass change (mg cm⁻²) -50 -100 -150 800HT -200 270 360 450 540 630 0 90 180 720 Time (days)

۱۸/	t١	0,	6
vv	ι	1	υ

Alloy	Cr	Ni	Fe	Co	Мо	W	C	Others
800HT	21	32.5	Bal.	-			0.08	0.8Mn, 0.5Si, 0.4Cu, 0.4Al, 0.4Ti
HR-120	25	37	Bal.	3*	2.5*	2.5*	0.05	0.7Mn, 0.7Nb, 0.6Si, 0.2N, 0.1Al, 0.005B
230	22	Bal.	3*		2	14	0.1	0.5Mn, 0.4Si, 0.3Al, 0.02La, 0.015B*

More adherent oxide

Ni-Cr-Al Cyclic Oxidation Degradation

Water Vapor Effects on High Temperature Oxidation

- The effects produced by water vapor on the high temperature oxidation of alloys depends on the alloy system.
- In the case of oxidation resistant alloys such as Al₂O₃- and Cr₂O₃-formers, water vapor affects the oxidation resistance adversely.

Effect of Water Vapor on Cracking and Spalling of α-Al₂O₃ Scales

• The presence of water vapor in the oxidizing gas mixture causes the α -Al₂O₃ scales to crack and spall more profusely than in dry gases

René N5 oxidized for 802 cycles @ 1100°C in air with 0.5atm water vapor

less evident as the interfacial toughness between α -Al₂O₃ and substrate becomes greater.

Mechanism: Stress Corrosion Cracking

Although cyclically oxidized low S superalloys do not spall as much as the regular S superalloys, water vapor has access to the oxide/substrate interface in both cases.
Low S superalloys have increased spallation resistance because of a higher Al₂O₃/substrate interfacial toughness.

• A crack that forms propagates until it is large enough to result in failure. Water vapor has access to the oxide/substrate interface through cracks in the oxide and, combined with the stress, can cause spalling of the scale by interfacial stress corrosion cracking.

Water Vapor Adversely Affects the Selective Oxidation of Aluminum in Alloys

Cross-section of Ni-8Cr–6Al oxidized for 1 h at 1100°C (a) in dry air, and (b) in air with water vapor (0.1 atm).

Cross-sections of Ni specimens exposed for 1hr@1100°C in dry air/air with water vapor showing position of Pt markers in the scale (see arrows);

dry air

air with water vapor (0.1atm)

Pt mesh deposited in dots of 1mm diameter by sputtering

Highlights of important results:

• the initial stages of oxidation are affected by water vapor

- more extensive transient oxidation stage
- enhanced internal oxidation
- inhibition of selective oxidation of AI
- NiO grows more rapidly during the transient period in water vapor
 - enhanced inward transport of oxygen-containing species along the oxide grain boundaries promotes growth of NiO
 - smaller grain size oxide

Planar SOFC Configuration

Electrolyte – YSZ Cathode – La/Sr-Manganite (LSM) Anode – Ni/YSZ Interconnect – Metallic

SOFC Current Collector (Interconnect) Exposure Conditions T = 600 – 800°C

Dual Atmosphere Effect – 304 Stainless Steel

Air Side – Dual Atmosphere Exposure

Air – Air Exposure

Silver Exposed Under Dual Atmosphere Conditions for 24 h at 800°C

Air Side

Ar-H₂-H₂O Side

Ni-200 - 600 Hours 800°C

High Conductivity Pathway

Silver Via, 800°C 100 Hours, exposed under dual atmospheric conditions. The upper surface was exposed to dry air while the lower surface was exposed to simulated anode gas of Ar-10% H_2O-4 % H_2 .

Mixed Oxidant Corrosion

The phases formed from other oxidants generally grow faster than the respective oxides (with some notable exceptions).

Growth of Oxides and Sulfides

Duplex Sulfide/Oxide Scale on Iron in Ar-1%SO₂ at 900°C

Fe₃O₄ + FeS duplex

FeO + FeS duplex

Iron

Reaction Path

Sulfidation/Oxidation of an Alloy

Other Reactants in Gas Affecting Cyclic Oxidation of Alumina Formers

The second reactant causes alumina formation to stop at shorter times

Effects of Carbon on the High Temperature Corrosion of Fe-Base and Ni-Base Alloys

- •Gases with low carbon activities can disrupt the selective oxidation process.
- •Gases with high carbon activities (a_C>1) can result in coking and metal dusting. (T range for dusting 400-850°C)

Effect of CO₂ on the Oxidation of Fe-Cr Alloys

Cross-sections of Fe-15wt%Cr Oxidized at 900°C

Alloy on the left was exposed for 4 h in CO_2 Alloy on the right was exposed for 16.6 h in 0.2 atm O_2

Isothermal Stability Diagram for the Cr-C-O System at 1250K

Carbon Activity in Gaseous Mixtures

Consider a gas consisting initially of 99%CO and 1% CO_2 at P = 1 atm entering a system at 1100K

$$2CO(g) = C(s) + CO_2(g)$$
$$K = \frac{a_C p_{CO_2}}{p_{CO}^2}$$
$$a_C = \frac{Kp_{CO}^2}{p_{CO_2}}$$

 $K_{1100} = 0.0885 \rightarrow a_c = 8.7$ i.e. Gas is Supersaturated

Metal Dusting of Alloy 800 Exposed for 48 h at 850°C in Ar-10%CH₄