

Br Br			
			\$/kg
K Caller T, C. M. F. C. N. Ci Zi Ga Ga As Se Br Kr Rb Sr		AI	1.5
Co Ba Is HI To W R. D. P. H. At He TI PS BI Po At P.	*	Cu	1.6
R. R. Db Sg Hh Ha Mr Lan	*	Pb	0.4
Ce Pr Nd Sm Eu Gd Th Dy Ho Er Tm Yo Lu		Ni	6.8
The Per U		Sn	4.8
Inexpensive and Durable	*	Zn	0.9
Semiconductor Materials		Au	8700
@1 μ m x 400 km x 400 km => $\sim 10^6 \text{ m}^3$ + Lots of it!		Ag	140
		Pt	18300
#1) Host materials must be inexpensive	*	TiO2	1.9
to buy/use -> <u>ROCKS</u> (metal oxides)		Ti	26
#2) Structure/reactor/materials must be	*	W	0.4
inexpensive < \$20/m2-y	*	Fe	0.3
-> particulates	S	Si, C, C), N, H, P,

No theory can predict a material with adequate absorbance (bandgap/surface states), conductivity, bandedge locations, stability.

Parallel ("combinatorial") Experimentation An Old Methodology NOT a New Field

- ~ 400 bce Plato, Socrates Induction
- ~ 1600 Sir Francis Bacon
- ~ 1840's Thomas Edison (G.E.)
- ~ 1900 Ciamician (photocatalysis)
- ~ 1960's Dupont, IBM, and Sarnoff Labs
- 1969 Joe Hanak Phys. Lett. 30A 201-202 Sawatzky and Kay, I BM Report
- 1995 Xiang et al Science
- 1997 Symyx, 2000 HTE, etc.

Generalized Electro	osynthesis Chemistries
$\frac{Metal \ deposition/Oxidation}{M^{+} \rightarrow M \rightarrow MO}$	Metal Oxide Deposition Aqueous: M ⁺ → MOH → MO
1. Metal Electrodeposition $M^{n^+} + n e^- \rightarrow M^\circ$ (Cathodic) 2. Anodization/Anneal $M^\circ + H_2O \rightarrow MO + 2 H^+ + 2 e^-$ $M^\circ + O_2 \rightarrow MO$	1. MO Deposition electrode: $2 H_2O + 2 e^- \rightarrow H_2 + 2(OH^-)_{sur}$ [M ⁿ⁺ (ligand)] + n(OH ⁻) _{sur} → M(OH) _n ligands (acidic) = peroxide (basic) = lactate, citrate, ethylene glycol, acetate 2. Dehydration/Anneal M(OH) _n → MO _{n/2} + n/ ₂ H ₂ O
Electrochemical Deposition • Voltage, Current Density • Electrolyte, Electrode, Dopants • Time, Temperature, pH, Concentration	Non-Aqueous: M ⁺ + O ₂ → MO 1. Direct MO Deposition $xM^{n+} + y/_2O_2 + ne- \rightarrow M_xO_y$ In DMSO etc

Ternary ZnO Materials
$(A_x Zn_y O_z)$

- > 24 different dopants
- 8-12 concentrations (typically
- 0-20mM or 0-50mM in solution)
- > 2-4 replicates
- 500 800 ZnO-based films
- Synthesis by
 - "single-sample"
 - "diversity" libraries

Cobalt-doped ZnO showed the most promise for visible absorption. Thus, the next step was to explore this system more deeply.

Dopant	Vis PC	UV PC	Stability in KNO ₃ (aq.)	
Ag	Poor	Poor	Average	
AI	Good	Average	Good	
Au	Poor	Poor	Average	
Ce	Average	Average	Excellent	
Cd	Poor	Poor	Average	
Co	Excellent	Poor	Good	
Cr	Poor	Poor	Average	
Cu	Poor	Poor	Average	
Eu	Poor	Poor	Average	
Fe	Good	Good	Average	
Mn	Average	Average	Good	
Мо	Poor	Poor	Poor	
Ni	Excellent	Excellent	Average	
Nb	Poor	Average	Good	
Pd	Very Poor	Very Poor	N/A	
Pt	Poor	Poor	Poor	
Rh	Poor	Poor	Aveage	
Ru	Excellent	Excellent	Average	
Sb	Poor	Poor	Average	
Sn	Average	Average	Good	
Ti	Very Poor	Very Poor	N/A	
V	Poor	Poor	Average	
W	precipitated	precipitated	precipitated	
Zr	Average	Average	Good	

So C	oluti Co (%	on 6)			16.3 cm	•	Filr b	n Co y XI	o (% ?S)
0.0	0.0	0.0	1	0000	0000	0000	0.0	0.0	0.0	·
0.0	1.0	2.0		0000	0000	0000	0.0	0.06	0.1	Electrode "priming" rov
2.9	4.8	8.3		0000	0000	0000	0.2	0.3	0.5	To calibrate / equilibrate
13.0	17.4	21.3	E	0000	0000	0000	0.9	1.3	1.6	electrodes for temperature and voltage
23.1	25.9	28.6	8.8	0000	0000	0000	1.8	2.1	2.4	stability immediately
31.0	33.3	35.5	13	0000	0000	0000	2.7	2.9	3.2	prior to library synthesi
37.5	39.4	41.2		0000	0000	0000	3.4	3.7	3.9	
42.9	44.4	46.0		0000	0000	0000	4.2	4.4	4.6	
47.4	50.0	52.9		0000	0000	0000	4.8	5.2	5.6	
55.6	57.9	60.0		0000	0000	0000	6.1	6.4	6.8	
Capid 120 100r 1.5n Pote Coil	l Seria sampl nM Zr nL of e entiost ed Pt	l Elect es (10) nCl ₂ & lectrol atic de wire co	rocho (12 ar 60ml lyte s posit	emical Depos ray). 27 diffe M LiNO ₃ in E olution. Sam ion @ -1.15V r electrode	erent Zn:Cor PMSO with v ple size ~ 8m vs. Ag-wire	n (RSEDS) ratios with 4 re arying concer nm diameter. (-1.0V vs. Ag/	eplica ntratic AgCl)	tes eac ons of refere	ch. Co(N ence	IO ₃) ₂ .

• Calcined 500 °C for 8 hrs.

Points

- Successful electrosynthesis of WO₃, and substituted/doped WO₃ from peroxo complex
 - Electrodeposited Mo substitution preserves unstable monoclinic phase to high concentrations
 => metastable materials are useful.
 - ZBPC !
 - Increased cation intercalation
 - No success as yet at decreasing effective gap.

Iron Oxide as a PEC material

R -3 c (167) – trigonal a=5.0380 Å c=13.7720 Å

Sample 1- FeCl3 Sample 2-FeCl3-doped Ti 95 °C, 22hr growth

FeCl₃-Doped Ti was unsuccessful \rightarrow Can we use electrochemistry and self assembly Methods together??

Lionel Vayssieres et al. Chem. Mater., Vol. 13, No. 2, 2001

Photoelectrochemical Screening of Fe₂O₃ materials synthesized by ASPDS

Zero bias photocurrent was measured under UV-vis and vis-only radiation.

Photocurrent from iron oxide doped with Zn (30%) deposited by spray pyrolysis (~ 1 W/cm² illumination)

Preliminary Conclusions: The ASPDS can reliably and reproducibly synthesize samples; several steps are being taken to improve the crystallinity of iron oxides.

Sol Gel Synthesis		
 Single sample technique amenable for combinatorial 	PO-Sol Gel	PVP- Sol Gel
 synthesis Complex chemistry High degree of control based on kinetics and solvent evaporation Thickness limitations (>1 um) on a single processing step Soft chemistry method Inexpensive compared to other 	Pros -Amenable for powders -Solubility of most precursors	Pros -High stability of so gel -Viscosity is determined by the polymer
methods Requires minimal investment	Cons -Complex gelling due to kinetics -Thickness variation -Limited stability of gel	Cons -Limited solubility of precursors -Use of polymers and metal organics

Iron Oxides by PO Sol Gel

	Туре	Туре	Improved	Improved	Best
Dopant	Expected	Obtained	C.T 1	PC ²	Comp.
ті	N	N	Yes	Yes	X=0.05-0.09
AI	N	N	Yes	Yes	X=0.04-0.075
Ca	Р	N-	No	No	
Li	Р	N-	No	No	
Cu	Р	N-	No	No	
Ni	Р	N-	No	No	
Ag	Р	N-	No	??	
Mg	Р	N-	No	No	

Other dopant materials that will be used: Zn, W, In, V, Cr, Mn

C.T.¹=Charge Transport, P.C.²=Photocurrent

