International Symposium on Materials Issues in Hydrogen Production and Storage, August 20-25, 2006

Density-Functional Calculations of New Alanates

Ole M. Løvvik^{1,2} and Susanne M. Opalka³ ¹Centre for Materials Science and Nanotechnology, University of Oslo, Norway ²Institute for Energy Technology, Kjeller, Norway ³United Technologies Research Center, East Hartford, CT, USA

Alanates for hydrogen storage

- First alanate shown to be reversible: NaAlH₄.
- Any other (lighter) reversible alanates?
- What can we learn from the crystal structures and electronic structures?
- The role of Ti?

 $NaAlH_4 \rightarrow Na_3AlH_6 \rightarrow NaH$

Alanates for hydrogen storage

Accessible hydrogen wt%:

Crystal structure predictions

- E.g. Na₃AlH₆: Seven representative systems
- Full relaxation; allows to leave space group/symmetry

Space group	#	Туре	# atoms	Model system
<i>P</i> -1	2	Triclinic	20	Ti ₃ NiS ₆
$P2_{1}/n$	14	Monoclinic	20	$K_3Fe(CN)_6$
$P2_{1}/n$	14	Monoclinic	20	$Na_{3}AlF_{6}(\alpha)$
$Pna2_1$	33	Orthorhombic	40	Li ₃ AlF ₆
Immm	71	Tetragonal	20	$Na_3AlF_6(\beta)$
<i>R</i> -3	148	Rhombohedral	20	Ti ₃ NiS ₆
Fm-3m	225	Cubic	40	K ₃ MoF ₆

Calculation details

- Band-structure DFT
- VASP

- Generalized gradient appr. (GGA) PW91
- Projector augmented wave (PAW) method
- Spin polarization allowed
- Cut-off energy 780 eV
- Overall convergence: ~1 meV (0.01 kJ/mol)/unit cell

Predicted crystal structures

Compound	Predicted	Expt.	
	structure	structure	
LiAlH ₄	$P2_{1}/c$	$P2_{1}/c$	
NaAlH ₄	$I4_{1}/a$	$I4_{1}/a$	
KAlH ₄	Pnma	Pnma	
Li ₃ AlH ₆	<i>R</i> –3	<i>R</i> –3	
Na ₃ AlH ₆	$P2_{1}/n$	$P2_{1}/n$	
K ₃ AlH ₆	$P2_{1}/n$		
$Mg(AlH_4)_2$	<i>P</i> –3 <i>m</i> 1	<i>P</i> –3 <i>m</i> 1	
$Ca(AlH_4)_2$	Pbca		

- O. M. Løvvik, S. M. Opalka, H. W. Brinks, B. C. Hauback, Phys. Rev. B 69 (2004) 134117).
- O. M. Løvvik, O. Swang, Europhys. Lett. 67 (2004) 607.
- O. M. Løvvik, Phys. Rev. B. 71 (2005) 144111.
- O. M. Løvvik, O. Swang, J. Alloys Comp. 404-406 (2005) 757-761.
- O. M. Løvvik, P. N. Molin, Phys. Rev. B. 72 (2005) 073201.
- O. M. Løvvik, O. Swang, S. M.
 Opalka, J. Mater. Res. 20 (2005) 3199 (Invited paper).

Electronic density of states

Crystal orbital overlap populations

Stability of alkali alanates

• Electronic (ground state) formation enthalpy: $H_{\text{form}}(M_n \text{AlH}_{(n+3)}) =$ $E(M_n \text{AlH}_{(n+3)}) - n E(M) - E(\text{Al}) - (n+3)/2 E(\text{H}_2)$

Compound		LiAlH ₄	NaAlH ₄	KAlH ₄	Li ₃ AlH ₆	Na ₃ AlH ₆	K ₃ AlH ₆
H _{form}	(kJ/mol H ₂)	-55.5	-54.9	-70.0	-102.8	-69.9	-78.5

Stability of alkaline earth alanates

Electronic formation enthalpy:

 $\Delta H_{\text{Form}}(Ae(\text{AlH}_4)_2) = E(Ae(\text{AlH}_4)_2) - E(Ae) - 2E(\text{Al}) - 4E(\text{H}_2)$

Electronic reaction enthalpy:

 $\Delta H_{\text{React}}(Ae(\text{AlH}_4)_2) = E(Ae(\text{AlH}_4)_2) - E(AeH_2) - 2E(\text{Al}) - 3E(\text{H}_2)$

kJ/mol H ₂	Formation enthalpy	Reaction enthalpy
$Mg(AlH_4)_2$	-21.1	-6.2
$Ca(AlH_4)_2$	-59.4	-20.7

Why are not Li and Mg alanates reversible?

- Na and K alanates exhibit reversible hydrogenation, Li and Mg alanates not.
- Indicators of reversibility from calculations?
- Electronic structure: no clear signs.
- Crystal structure: Li₃AlH₆ stands out.
- Thermodynamic stability: Li₃AlH₆ stands out.
- The reason: Li small enough for Li_3AlH_6 to attain the *R*-3 structure, making Li_3AlH_6 too stable.
- Similarly: Mg alanate too unstable.
- No easy generalization to other materials.

(:)

Prediction of new mixed alanate phases

LiAlH₄

"Tetrahydrides"

• O. M. Løvvik, O. Swang, Europhys. Lett. 67 (2004) 607.

(2005) 757-761

- O. M. Løvvik, O. Swang, J. Alloys Comp. **404-406** K_{0.25}Li_{0.75}AlH₄ $|\text{Li}_{0.75}\text{Na}_{0.25}\text{AlH}_4|$
- O. M. Løvvik, O. Swang, S. M. Opalka, J. Mater. Res. 20 (2005) 3199

Prediction of new mixed alanate phases

Thermodynamic properties

- How is the temperature and pressure dependence?
- Could mixtures be more attractive?
- Performed phonon calculations to assess thermodynamic properties of the Li-Na-Al-H system.

S. M. Opalka, O. M. Løvvik, H. W. Brinks, B. C. Hauback, In prep.

Phonon calculations

- Vibration frequencies from displacement calculations
- Phonon spectrum and partition function
- Integrated phonon density \rightarrow Thermodynamics

Thermodynamic predictions

Optimum H reversibility

• {2Na : 1Li : 2Al : 9H}:

Alanates for hydrogen storage

Accessible hydrogen wt%:

LiAlH₄ NaAlH₄ $KAlH_4$ Li₃AlH₆ Na₃AlH₆ K_3AlH_6 $Mg(AlH_4)_2$ $Ca(AlH_4)_2$ LiNa₂AlH₆ LiH+2NaAlH₄

Alanate surfaces

- LiAlH₄: The (010) surface most stable.
- NaAlH₄: The (001) surface most stable.
- Mg(AlH₄)₂: The (001) surface most stable.
- O. M. Løvvik, J. Alloys
 Comp. **356-357** (2003) 178.
- T. Frankcombe, O. M. Løvvik, J. Chem. Phys. B **110** (2006) 622.
- O. M. Løvvik, P. Molin, In prep.

Ti in NaAlH₄ – experimental status

- Nature of Ti additive not important (TiCl₃, TiF3, Ti powder, Ti(OBu)₄, etc.)
- Three different majority phases found:
 - ♦ Al₃Ti
 - Dispersed, amorphous $Al_{1-u}Ti_u$ (u = 0.07 0.15)
 - \bullet TiH₂
- Samples with different Ti majority phases have comparable kinetics
- Is there an active minority phase?
- Doping or catalysis?

- O. M. Løvvik, S. M. Opalka, Phys. Rev. B. **71** (2005) 054103
- O. M. Løvvik, S. M. Opalka, Appl. Phys. Lett., 88 (2006) 161917

0-D (point) defects

- Disregard majority phases
- If in the NaAlH₄ lattice:
 - Ti substituting Al or Na, or at interstitial sites.
 - Additional vacancies may be produced.
 - Surface or bulk?
- Full relaxation; lattice constants change?
- Reference: standard state or all relevant compounds

The most stable structure

- Ti: not in the bulk.
- If in the lattice: near the Increased Ti-H surface, replacing Al.
- Metastable at best.

- Large local distortions.
- coordination from 4 to 8.
- Weak Ti-H bonds.

1-2D defects in NaAlH₄

- Unknown if such defects exist.
- What are their energy costs?
- What are their effects?

In prep.

1-2D defects in NaAlH₄

- A
 Image: A image: A

A

Β

A

Stacking fault distance

Stacking faults

defects exist.
What are their energy costs?

1D: dislocations.

• 2D: stacking faults,

twins, anti-phase

boundaries, grain

Unknown if such

boundaries.

• What are their effects?

Relaxed structure

- Very similar to perfect lattice
- Main difference: Na-H coordination reduced from 8 to 6
- Possible to observe?

Ti substitution near faults

- Investigated Al→Ti, Na →Ti, and interstitial Ti
- Internal reference: Al →Ti most stable
- Ti-H coordination: 8
- Results for Z = 6; 16.7 % Ti.
- Interpolated values for defectfree models

Internal reference, energies in kJ/mol atom

What about nonequilibrium structures?

- Suppose that mono-dispersed Ti is available.
- Investigated clusters with constant number of atoms.
- \Rightarrow Reference is NaAlH₄ + Ti.

A. Marashdeh, R. A. Olsen, O. M. Løvvik, G.-J. Kroes, Chem. Phys. Lett. **426** (2006) 180–186; In prep.

The role of Ti?

- End point: Na \leftrightarrow Ti.
- Na out of the structure.
- Start of decomposition?

The role of Ti?

The "zipper model":

- Ti acts as a slider.
- Catalysis, but not traditional.
- May be combined with H₂ splitting in the absorption process.
- Promoted by 2D defects?

Summary

- Probably no better alanate than NaAlH₄.
- The LiH + 2 NaAlH₄ mixture is interesting. (And maybe Ca(AlH₄)₂.)
- Minority phase of Ti probably important in NaAlH₄ (de-)hydrogenation:
 - ◆ Ti substitution in bulk ruled out.
 - ◆ Ti substitution promoted by defects.
 - ◆ Non-equilibrium: Ti may enter lattice.
 - ◆ Proposed model: zipper model with Ti-slider.

Acknowledgements

United

Coworkers:

- ♦ Susanne Opalka, UTRC
- ◆ Peter Molin, UiO
- ♦ Bjørn Hauback et al., IFE
- ♦ Roar Olsen *et al.*, Leiden University
- ♦ Ole Swang *et al.*, Sintef
- ♦ Max Fichtner *et al.*, Forschungszentrum Karlsruhe
- Funding: Nanomat, NFR

Institutt for energiteknikk

SINTEF

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

UNIVERSITY

OF OSLO