Part IV – Multiferroic RMnO₃

- Ferroelectric & magnetic ordering
- SHG spectroscopy
- SHG topography
- Identification of multiferroic interactions

Multiferroic Hexagonal Manganites *R***MnO**₃

Hexagonal manganites $RMnO_3$ (R = Sc, Y, In, Dy, Ho, Er, Tm, Yb, Lu)

 $T < T_C \approx 600-1000 \text{ K} \implies \text{ferroelectric (FEL) + paramagnetic (PM)}$

 $T < T_N \approx 65-130 \text{ K} \Rightarrow \text{ferroelectric (FEL) + antiferromagnetic (AFM)}$

 $T < T_{RE} \approx 5 \text{ K} \implies \text{FM or AFM order of } \mathbb{R}^{3+}\text{-spins for } R = \text{Ho - Yb}$

Ferroelectric order of *R***MnO**₃

Ferroelectric phase transition at $T_c \approx 900 \text{ K}$

Breaking of inversion symmetry I

PG: 6/mmm \rightarrow 6mm

Order parameter \mathscr{P} \leftrightarrow ferroelectric polarization $\mathbf{P} = (0, 0, P_z)$

Ferroelectric SHG contributions

Point group 6mm \rightarrow broken inversion symmetry \rightarrow ED-SHG

$$\Rightarrow \chi_{ijk}^{ED}(T < T_C) = \chi_{ijkz}(T > T_C)\mathscr{P}_z$$

Allowed components of χ^{ED} : χ_{zzz} , $\chi_{xxz}(3) = \chi_{yyz}(3)$

$$\Rightarrow \vec{\mathsf{P}}(2\omega) \propto \begin{pmatrix} 2\chi_{xxz}\mathsf{E}_{x}(\omega)\mathsf{E}_{z}(\omega) \\ 2\chi_{xxz}\mathsf{E}_{y}(\omega)\mathsf{E}_{z}(\omega) \\ \chi_{zxx}\left(\mathsf{E}_{x}^{2}(\omega) + \mathsf{E}_{y}^{2}(\omega)\right) + \chi_{zzz}\mathsf{E}_{z}^{2}(\omega) \end{pmatrix}$$

No SHG for k||z!

Ferroelectric SHG contributions

$$\vec{\mathsf{P}}(2\omega) \propto \begin{pmatrix} 2\chi_{xxz}\mathsf{E}_{x}(\omega)\mathsf{E}_{z}(\omega) \\ 2\chi_{xxz}\mathsf{E}_{y}(\omega)\mathsf{E}_{z}(\omega) \\ \chi_{zxx}\left(\mathsf{E}_{x}^{2}(\omega) + \mathsf{E}_{y}^{2}(\omega)\right) + \chi_{zzz}\mathsf{E}_{z}^{2}(\omega) \end{pmatrix}$$

- All expected SH contributions detectible
- Leading contribution χ_{zxx}
- No dependence on the *R*-ion

Antiferromagnetic order of *R***MnO**₃

In-plane triangular spin structure

- \Rightarrow geometric frustration
- \Rightarrow 120°-spin structure
- + inter-plane ordering

+ sublattice interaction $Mn \leftrightarrow R$

 \Rightarrow complex magnetic system!

Antiferromagnetic α - and β -order

Mn-lon at z = 0Mn-lon at z = c/2

- Ferromagnetic interplane coupling
- Spin lattice is inversion symmetric

- Antiferromagnetic interplane coupling
- Spin lattice is not inversion symmetric

 α and β structures not distinguishable with diffraction techniques!

Anitferromagnetic α -order

Three different spin-orders depending on the spin-angle ϕ distinguishable:

Mn-Ion bei z = c/2

Spin order distinguishable by SHG polarization!

Anitferromagnetic β**-order**

Three different spin-orders depending on the spin-angle ϕ distinguishable:

 $\begin{array}{ll} \beta_x \ (\phi=0^\circ): & PG \ 6\underline{mm} \\ & ED: \ \chi_{xyz}=\chi_{xzy}=-\chi_{yxz}=-\chi_{yzx} \end{array}$

 $β_y$ (φ=90°): PG 6mm ED: χ_{zzz} , χ_{xxz} (3) = χ_{yyz} (3)

No SHG for k||z!

Magnetic Structure and SHG Selection Rules

At least 8 different in-plane spin structures with different symmetries and different selection rules for SHG

$$\mathsf{P}_{i}(2\omega) \propto \chi_{ijk} \mathsf{E}_{j}(\omega) \mathsf{E}_{k}(\omega)$$

- <u>6m</u>m : $E_x(\omega) \rightarrow P_x(2\omega) \sim \chi_{xxx}$
- <u>6mm</u> : $E_x(\omega) \rightarrow P_y(2\omega) \sim \chi_{yyy}$
- **<u>6</u>** : $\mathsf{E}_{\mathsf{x}}(\omega) \to \mathsf{P}_{\mathsf{x}}(2\omega) \oplus \mathsf{P}_{\mathsf{y}}(2\omega)$
- **6.** : $E_x(\omega) \rightarrow 0$

etc.

Polarization of ingoing and outgoing light reveals the magnetic symmetry

Symmetry determination by SHG spectroscopy

Symmetry determination by SHG spectroscopy

Spin || x-axis (Symmetry <u>6mm</u>)

 \Rightarrow Intensity maximum at 2.46 eV

Spin || y-axis (Symmetry $\underline{6mm}$) \Rightarrow Intensity minimum at 2.46 eV

Just by using the spectral degree of freedom the magnetic symmetry can be determined!

Phase Transitions in $RMnO_3$ (R = Sc, Ho, Lu)

Temperature depended change of symmetry:

High T: <u>6mm</u>

Low T: <u>6m</u>m

In addition temperature ranges with coexisting phases and reduced symmetry!

Phase Coexistence in ScMnO₃

Temperature depended

Spatial resolved

Geometric Model for Spin-Angle Calculation

From symmetry:

PG	ϕ_{spin}	χ_{xxx}	Ҳууу
<u>6</u> m <u>m</u>	0°	0	≠0
<u>6m</u> m	90°	≠0	0
<u>6</u>	0°90°	≠0	≠0

Geometric model: Calculating spin-angle from SHG intensities

$$\chi_{xxx}(\varphi_{spin}) = \chi^{0}_{xxx} \sin(\varphi_{spin})$$

$$\chi_{yyy}(\varphi_{spin}) = \chi^{0}_{yyy} \cos(\varphi_{spin})$$

$$\chi_{yyy}(\varphi_{spin}) = \chi^{0}_{yyy} \cos(\varphi_{spin})$$

$$\chi_{xxx}(T) = \arctan\left(\frac{|\chi^{0}_{yyy}(T)|}{|\chi^{0}_{xxx}(T)|} \sqrt{\frac{I_{SH}^{x}(T)}{I_{SH}^{y}(T)}}\right)$$

Phase Coexistence & Spin Topography (ScMnO₃)

universitätbonn

Spin Rotation in HoMnO₃

1.0 mm

Phase transition at ≈41 K:

 $T < T_R$: Symmetry <u>6</u>m<u>m</u>

 $T > T_R$: Symmetry <u>6m</u>m

 \Rightarrow 90° spin rotation at T_R = 41 K

Spin-Rotation Domains in HoMnO₃

Inside AFM domain walls reduced local symmetry <u>2</u> due to uncompensated magnetic moment.

- $\underline{2}$ allows ME contribution $\mathsf{P}_z \propto \alpha_{zx,y} \; \mathsf{M}_{x,y}$
- \Rightarrow Local ME effect

Magnetic Phase Diagram of Hexagonal RMnO3

Magnetic Phase Diagram of ErMnO₃

Reorientation of Mn³⁺ sublattice in magnetic field along hexagonal axis

Phys. Rev. Lett. 88, 027203 (2002)

H/T Phase Diagram of Hexagonal RMnO₃

So far...

- Detection of obviously FEL/AFM induced SHG
- Analysis of magnetic ordering
- Phase diagrams depending on temperature & magnetic field

But what about the multiferroic nature of RMnO₃?

SHG in a Multiferroic Compound

ED contribution for magnetic ferroelectrics:

 $\vec{P}^{NL}(2\omega) = \varepsilon_0 \left[\hat{\chi}(0) + \hat{\chi}(\wp) + \hat{\chi}(\ell) + \hat{\chi}(\wp \ell) + \dots \right] \vec{E}(\omega) \vec{E}(\omega)$

- $\chi(0)$: Paraelectric paramagnetic contribution _____ always allowed
- $\chi(\mathcal{P})$: Ferroelectric contribution
- $\chi(\ell)$: Antiferromagnetic contribution
- $\chi(\mathcal{P}\ell)$: Ferroelectromagnetic contribution
- always allowed

 allowed below

 the respective

 ordering temperature

Analog for MD and EQ \Rightarrow in total 12 possible contributions!

But later ones only taken into account if ED not allowed.

Symmetry analysis

- \bullet Only α_{x} order taken into account
- FEL, AFM & FEL+AFM as separated sublattices

Ordered	Point Parity - type		Order
Sublattice	group	symmetry operation	parameter
(para)	6/mmm	I, T, IT	
FEL	6mm	Т	Ţ
AFM	<u>6/mmm</u>		l
FEL + AFM	<u>6</u> m <u>m</u>		Г <mark>е</mark>

SHG contributions

Lowest order non-zero contributions to SHG:

Zero order: Electric dipole (ED): $\hat{\chi}^{ED}(\mathscr{P}) = i_1, i_2, i_3$ and $\hat{\chi}^{ED}(\mathscr{P} \cdot \ell) = e_1$ First order: Magnetic dipole (MD): $\hat{\chi}^{MD}(\ell) = m_1$ First order: Electric quadrupole (EQ): $\hat{\chi}^{EQ}(\ell) = q_1, q_2, q_3$

		$\mathbf{S}^{ED}(\mathcal{P})$	$\mathbf{S}^{MD}(\ell)$	$\mathbf{S}^{EQ}(\ell)$	$\mathbf{S}^{ED}(\mathcal{P}\cdot \ell)$
k x	Sy	$2i_1E_yE_z$			$e_1 E_y^2$
	S _z	$i_2 E_y^2 + i_3 E_z^2$			
k y	S _x	$2i_1E_xE_z$		$-2q_1E_xE_z$	
	S _z	$i_2 E_x^2 + i_3 E_z^2$	$m_1 E_x^{2}$	$-q_2 E_x^2$	
k z	S _x		-2m₁E _x E _y	$-2q_3E_xE_y$	$-2e_1E_xE_y$
	Sy		$m_1(E_y^2 - E_x^2)$	$q_3(E_y^2 - E_x^2)$	$e_1(E_y^2 - E_x^2)$

Magnetoelectric SHG

2.0 2.2 2.4 2.6 2.8 2.0

SH energy (eV)

2.2

2.4

SH energy (eV)

2.6

2.8

What about domains?

Ferroelectric domains

Ferroelectromagnetic domains

Antiferromagnetic domains

Ferroelectric and ferroelectromagnetic SHG contribution allow three experiments:

Ferroelectromagnetic Domains

Clamping of Antiferromagnetic Domains

Coexisting domains in YMnO₃:

- \diamond Antiferromagnetic domains: $\propto \ell$
- $\Rightarrow "Magnetoelectric" domains: \qquad \propto \mathcal{P}\!\ell$

 $\mathcal{P}\ell = \pm 1$ for $\mathcal{P} = \pm 1$, $\ell = \pm 1$ $\mathcal{P}\ell = -1$ for $\mathcal{P} = \pm 1$, $\ell = \pm 1$

- ➢ Any reversal of FEL order parameter clamped to reversal of the AFM order parameter → *local* ME effect
- Coexistence of "free" and "clamped" AFM walls

E-Field induced ME effect

Applying an electric field (= *ferroelectric poling*) above the magnetic phase transition temperature leads to quenching of the magnetic SHG signal!

Magnetic SHG image

Magnetic Phase Control by Electric Field

Magnetic Phase Control by Electric Field

Electric field suppresses magnetic SHG and leads to additional field depended contribution to Faraday rotation

\Rightarrow Induction of magnetic phase transition!

Summary

Nonlinear optics on multiferroics:

- > Nonlinear optics is based on symmetry: $\chi_{ijk} \leftrightarrow$ symmetry \leftrightarrow structure
- Simultaneous study of all ferroic structures with the same technique

Access to:

- Electric-magnetic phase diagrams
- Magnetoelectric interactions
- Multiferroic domain topology
- Ultrafast dynamics
- ➢ Etc. etc.

Acknowledgements

Bonn:

Manfred Fiebig Dennis Meier Tim Hoffmann Anne Zimmermann Michael Maringer Tobias Kordel Christian Wehrenfennig

Cologne:

Ladislav Bohatý Petra Becker **Dortmund:**

Dietmar Fröhlich Stefan Leute Martin Kneip Carsten Degenhard Senta Kallenbach Thorsten Kiefer Matthias Maat Claudia Reimpell **Russia:**

Roman Pisarev Victor Pavlov

Japan:

Kai Kohn

