Nonlinear Optics on Ferroics & Multiferroics

Introduction

- Part I Symmetry
- Part II Nonlinear Optics
- Part III Experimental Techniques
- Part IV Multiferroic RMnO₃

Thomas Lottermoser

Principle of Nonlinear Optical Structure Analysis

Symmetry and Multiferroics

Symmetry and Nonlinear Optics

Case 1:

- Crystal in a paraelectric phase
- Inversion symmetry not broken

Case 2:

- Crystal in a ferroelectric phase
- Inversion symmetry broken

Literature

- General introductions to nonlinear Optics:
 Y.R. Shen, A. Yariv, or R.W. Boyd
- K.H. Bennemann: Nonlinear Optics in Metals
- R.R. Birss: Symmetry and Magnetism

Part I - Symmetry

- Symmetry Operations
- Space & Time Inversion
- Tensors
- Point Groups

What's Symmetry?

universität**bon**r

What's Symmetry?

Symmetry:

Conservation of shape under applying a symmetry operation

Asymmetry:

Change of shape under applying a symmetry operation

e.g. mirror symmetry

Mathematical Matrix Representation

$$I = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \equiv \begin{bmatrix} \overline{1} \end{bmatrix}$$

Rotation:

$$R(\varphi_{y}) = \begin{bmatrix} \cos(\varphi_{y}) & 0 & \sin(\varphi_{y}) \\ 0 & 1 & 0 \\ -\sin(\varphi_{y}) & 0 & \cos(\varphi_{y}) \end{bmatrix}$$
$$\Rightarrow R(180^{\circ}) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 2_{y} \end{bmatrix}$$

Mirroring: (= I • R)

$$M_{y} = \begin{bmatrix} \overline{1} \end{bmatrix} \cdot \begin{bmatrix} 2_{y} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \equiv \begin{bmatrix} \overline{2}_{y} \end{bmatrix}$$

Point Symmetries in Crystals

Only discrete symmetries in crystals:

- Identity operation: [1]
- Inversion: $\left[\overline{1}\right]$
- Rotations: $[1_x], [2_x], [3_x], [4$
 - Mirror planes:
- $[1_x], [2_x], [3_x], [4_x], [6_x], etc.$ $[\overline{2}_x], [\overline{2}_y], [\overline{2}_z], etc.$
- ⇒ System of 32 point groups with different subsets of symmetry operations

Symmetry and Physics

P. Curie, 1894: "C'est la dissymmétrie qui crée le phénomène"

- e.g.: Ferroelectricity:
- I. Paraelectric phase:

II. Ferroelectric phase:

inversion symmetry

Polar tetragonal crystal without inversion symmetry

Curie's Principle

The symmetry of a crystal exhibiting a certain effect is the intersection of the symmetries of the bare crystal and the effect itself

Crystal symmetry =
$$G_c$$

Effect symmetry = G_E $G_C \cap G_E \equiv G_{CE}$

Neumann's Principle

The physical properties of a crystal have at least the symmetry of the crystal

Example: Ferroelectricity

Electric polarization breaks inversion symmetry

⇒ No ferroelectricity in crystals possessing inversion symmetry!

Property & Field Tensors

Physical effects in crystals can be described by the equation:

$$E(\text{ffect}) = P(\text{roperty}) \cdot C(\text{ause})$$

E, C: Field tensors
P: Property tensor
Anisotropic quantities
L Symmetry!

Examples:

- Dielectric displacement $\mathbf{D} \propto \boldsymbol{\epsilon} \cdot \mathbf{E}$
- Magnetic induction
- $\mathbf{B} \propto \mathbf{\mu} \cdot \mathbf{H}$

Neumann's Principle & Property Tensors

Property tensors must be invariant under all symmetry operations of the crystal

Example: Second harmonic generation (SHG)

 $\mathsf{P}(2\omega) \propto \chi^{(2)} \mathsf{E}(\omega) \mathsf{E}(\omega)$

Inversion I \Rightarrow -P(2 ω) $\propto \chi'^{(2)}$ (-E(ω))(- E(ω))

 $\Rightarrow \chi'^{(2)} = -\chi^{(2)} \underbrace{}_{\text{symmetry operation}}$ if inversion is symmetry operation

⇒ No SHG in crystals possessing inversion symmetry!

Classification of Tensors: Parity Operations

Symmetry operations with eigenvalues ±1

Spatial inversion I

Time inversion T

Parity Operations: Spatial Inversion

Polar tensors:

$$I\vec{\mathsf{P}}(\vec{\mathsf{r}},\mathsf{t}) = -\vec{\mathsf{P}}(-\vec{\mathsf{r}},\mathsf{t})$$

⇒ Polar tensors of *odd* rank are equal to zero in centrosymmetric crystals!

Axial tensors:

$$\vec{IM}(\vec{r},t) = \vec{M}(-\vec{r},t)$$

 \Rightarrow Axial tensors of *even* rank are equal to zero in centrosymmetric crystals!

Parity Operations: Time Inversion

i-tensors: $T\vec{P}(\vec{r},t) = \vec{P}(\vec{r},-t)$

c-tensors:

$$T\vec{M}(\vec{r},t) = -\vec{M}(\vec{r},-t)$$

 \Rightarrow c-tensors in non-magnetic crystals are equal to zero!

Time Inversion = Going Back in Time?

Answer: NO!

Here: Only static effects ↔ no increase of entropy!

e.g. electric current: $j_i = \sigma_{ii} E_i$

Only current flow in magnetic crystals!

In this context: **Time reversal equivalent to spin reversal!**

General Classification of Symmetry Operations

1-, 2-, 3-, 4-, and 6-fold rotations \Rightarrow 11 Laue-groups

- + Spatial inversion $I \Rightarrow 32$ crystallographic point groups
- + Time inversion T
- ------
- + Translation

Optical regime: $\lambda >> a$

- ⇒ 122 magnetic point groups
- ⇒ 230 crystallographic space groups
- & 1651 magnetic space groups

Nomenclature of Point Groups

<u>System after Hermann-Mauguin:</u> Directly derived from the allowed symmetry operations, but only 'significant' subset is used.

'Forbidden' Effects

What symmetry can not do:

- No definite prediction of a certain effect
- No microscopic/quantitative description of physical effects

What symmetry can do:

- A prediction which effects are possible
- A prediction which effects are definitely forbidden

e.g. no ferroelectricity in centrosymmetric crystals

The Magnetoelectric (ME) Effect

$$\mathsf{P}_{\mathsf{i}} = \varepsilon_0 \chi_{\mathsf{ij}}^{\mathsf{e}} \mathsf{E}_{\mathsf{j}} + \frac{1}{\mathsf{c}} \alpha_{\mathsf{ij}} \mathsf{H}_{\mathsf{j}} \qquad \mathsf{M}_{\mathsf{i}} = \chi_{\mathsf{ij}}^{\mathsf{m}} \mathsf{H}_{\mathsf{j}} + \frac{1}{\mu_0 \mathsf{c}} \alpha_{\mathsf{ij}} \mathsf{E}_{\mathsf{j}}$$

 P_i , E_j = first rank polar i-tensors, M_i , H_j = first rank axial c-tensors

ME forbidden in at least 53 of the 122 magnetic point groups!

How to Derive Tensor Components?

 Be smart and solve for each allowed symmetry operation 3ⁿ equations of the type:

$$\mathbf{d}_{\mathsf{ijk...n}} = \sigma_{\mathsf{ip}} \sigma_{\mathsf{jq}} \sigma_{\mathsf{kr}} \cdots \sigma_{\mathsf{nu}} \mathbf{d}_{\mathsf{pqr...u}}$$

2. Be even smarter and look them up in the book of Birss:

BY

ROBERT R. BIRSS

Senior Lecturer in Physics University of Sussex, Brighton

Magnetoelectric Effect in Cr₂O₃

1. Symmetry and symmetry operations for Cr₂O₃

Tri- gonal	3m	3m 6·m 1,		1, $\overline{1}$, $3(2_{\underline{1}})$, $3(\overline{2}_{\underline{1}})$, $\pm 3_z$, $\pm \overline{3}_z$	σ ⁽¹⁾ , σ ⁽²⁾ , σ ⁽⁶⁾	-	
	3 <u>m</u>	6.m	3	5	$1, \overline{1}, \pm 3, \pm \overline{3}, 3(2,), 3(\overline{2},)$	σ ⁽¹⁾ , σ ⁽⁶⁾	g(2)
=>	<u>3m</u>	. <u>č</u> .m	32	3:2	1, $3(2_1)$, $\pm 3_2$, $\overline{1}$, $3(\overline{2}_1)$, $\pm \overline{3}_2$	a(2), a(6)	σ ⁽¹⁾

The magnetoelectric tensor in Cr₂O₃:

3. The components of $\boldsymbol{\alpha}$

<i>m</i> = 2	xx	уу	22	xy	yx	xz(2)	yz(2)
K ₂	xx	xx	22	xy	- xy	0	0
L ₂	xx	xx	ZZ	0	0	0	0
M ₂	0	0	0	xy	- xy	0	0

Part II – Nonlinear Optics

- Introduction & overview
- Second harmonic generation (SHG)
- Determination of tensor components
- SHG & (multi-)ferroic order

Nonlinear Optics

Nonlinear Optics $P_{i}(\omega) \propto \chi_{ij}^{(1)} E_{j}(\omega_{1}) + \chi_{ijk}^{(2)} E_{j}(\omega_{1}) E_{k}(\omega_{2}) + \chi_{ijkl}^{(3)} E_{j}(\omega_{1}) E_{k}(\omega_{2}) E_{l}(\omega_{3}) + \dots$ PNL PL Quadratic effects: Frequency doubling $\omega = 2\omega_1$ Pockels effect $\mathsf{P}_{\mathsf{i}}(\omega) \propto \chi^{(2)}_{\mathsf{i}\mathsf{i}\mathsf{k}} \mathsf{E}_{\mathsf{i}}(\omega) \mathsf{E}_{\mathsf{k}}(0)$ Sum frequency generation $\omega = \omega_1 + \omega_2 + \omega_3$ Cubic effects: Difference frequency $\omega = 2\omega_1 - \omega_2$

But: $\chi^{(1)} \approx 1$, $\chi^{(2)} \approx 10^{-10}$ cm / V, $\chi^{(3)} \approx 10^{-17}$ cm² / V²

Conventional light sources E ≈ 1 V/cm

First Observation of Optical Harmonic Generation

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich

Generation of Optical Harmonics

Phys. Rev. Lett. 7, 118 (1961)

FIG. 1. A direct reproduction of the first plate in which there was an indication of second harmonic. The wavelength scale is in units of 100 A. The arrow at 3472 A indicates the small but dense image produced by the second harmonic. The image of the primary beam at 6943 A is very large due to halation.

Optical Second Harmonic Generation (SHG)

SH-source term:

 $\mathsf{S}^{\mathsf{NL}}(2\omega) \propto \mathsf{P}^{\mathsf{NL}}(2\omega) \propto \chi(2\omega)\mathsf{E}(\omega)\mathsf{E}(\omega)$

SH intensity:

 $\textbf{I}_{SH} \propto |\textbf{S}^{NL}|^2 \propto |\chi \; \textbf{EE}|^2 = |\chi|^2 \, \textbf{I}_0^{\ 2}$

 $P^{NL}(2ω)$, E(ω): polar tensors of first rank ⇒ $\chi(2ω)$ polar tensor of third rank

No SHG in centrosymmetric crystals!

The Nonlinear Susceptibility χ

For SHG follows from perturbation theory:

$$\hat{\chi}(2\omega) \propto \sum_{i,f} \frac{\left\langle g \mid \hat{H}(2\hbar\omega) \mid f \right\rangle \left\langle f \mid \hat{H}(\hbar\omega) \mid i \right\rangle \left\langle i \mid \hat{H}(\hbar\omega) \mid g \right\rangle}{\left(E_f - E_g - 2\hbar\omega \right) \left(E_i - E_g - \hbar\omega \right)}$$

States $\langle i |$ are real states that are excited with large energy mismatch: $\Delta E \cdot \Delta t \sim \hbar$

SHG is a coherent, resonant process!

e.g. SHG spectra of antiferromagnetic Cr₂O₃

Nonlinear Multipole Contributions

Light-matter interaction Hamiltonian:

$$\hat{H} \propto \vec{p} \cdot \vec{A}$$
 with $\vec{A} = \sum_{\vec{k}} \vec{A}_{\vec{k}} e^{i\vec{k}\vec{r}} + c.c.$

 \vec{p} : Electron impulse operator, \vec{A} : Light field vector potential

In crystals usually
$$\lambda \propto \left| \vec{k} \right|^{-1} >> a$$
 (= lattice constant)

$$\Rightarrow \exp(i\vec{k}\vec{r}) \cong 1 + i\vec{k}\vec{r} + \dots \Rightarrow \hat{H} = \hat{H}_{ED} + \hat{H}_{MD} + \hat{H}_{EQ}$$

$$Zero \qquad First \\ order \qquad order$$

universität

Nonlinear Multipole Contributions

Three nonlinear contributions:

Electric dipole (ED): $\vec{P}^{NL}(2\omega) \propto \chi^{ED}(2\omega)E(\omega)E(\omega)$ Magnetic dipole (MD): $\vec{M}^{NL}(2\omega) \propto \chi^{MD}(2\omega)E(\omega)E(\omega)$ Electric quadrupole (EQ): $\hat{Q}^{NL}(2\omega) \propto \chi^{EQ}(2\omega)E(\omega)E(\omega)$

 \Rightarrow Multipole expansion of source term \vec{S} for SHG:

$$\vec{S} = \mu_0 \frac{\partial^2 \vec{P}^{\mathsf{NL}}}{\partial t^2} + \mu_0 \left(\vec{\nabla} \times \frac{\partial \vec{M}^{\mathsf{NL}}}{\partial t} \right) - \mu_0 \left(\vec{\nabla} \frac{\partial^2 \hat{Q}^{\mathsf{NL}}}{\partial t^2} \right)$$

Leading contribution of the order α larger, but maybe symmetry forbidden!

SHG in (Multi-)ferroics

Sa et al. Eur. Phys. J. B 14 (2000):

 $\chi^{\rm SHG}(T < T_{\rm O}) = \chi(T > T_{\rm O})\mathcal{O}$

→ Order parameter

→ Susceptibility in the para phase

- → Susceptibility in the ferroic phase
- χ^{SHG} is a function of the order parameter \mathfrak{O}

• Non-zero components of χ^{SHG} obtained from symmetry of the order parameter and the crystal in the para phase \rightarrow *Curie's principle*

Order Parameter ©

Properties:

- Zero for T>T_O, non-zero for T<T_O
- Invariant under symmetries of the group of the ordered phase
- Non-invariant under the symmetries lost at the phase transition
- Each orientation of \mathfrak{O} represents one ferroic domain state

Here:

O is the lowest rank tensor that fulfils all of the properties above

e.g. the polarization **P** in a ferroelectric or magnetization **M** in ferromagnetic crystal

Antiferromagnetic Cr₂O₃

Crystallographic point group $\overline{3}m$

Magnetic point group $\overline{3m}$

Order parameter:

$$\mathbf{I}_{z} = \mathbf{S}_{1,z} - \mathbf{S}_{2,z} + \mathbf{S}_{3,z} - \mathbf{S}_{4,z}$$

Antiferromagnetic Cr₂O₃

Properties of orderparameter \mathcal{I}_z :

- Symmetry <u>3m</u>
- c-axial scalar

$$\Rightarrow \chi_{ijk}^{SHG}(T < T_N) = \chi_{ijk}(T > T_N)\mathcal{I}_z$$

i-axial, third rank: $\chi_{yyy} = -\chi_{yxx} = -\chi_{xyx} = -\chi_{xxy}$
c-axial, third rank: $\chi_{yyy} = -\chi_{yxx} = -\chi_{xyy}$

Antiferromagnetic Cr₂O₃

Tensor components: $\chi_{yyy} = -\chi_{yxx} = -\chi_{xyx} = -\chi_{xxy}$

$$\Rightarrow P(2\omega) \propto \begin{pmatrix} 2\chi_{yyy}(2\omega)E_x(\omega)E_y(\omega) \\ \chi_{yyy}(2\omega)(E_x^2(\omega) - E_y^2(\omega)) \\ 0 \end{pmatrix}$$

k-direction & polarization selection rules:

1. k||x: Only signal for E||y & P||y

2. k||y: No signal

3. k||z: All components allowed

Set of yes or no type rules to determine symmetry and structure

Generalized Description

Higher order contributions of \mathcal{O} :

$$\chi(\mathsf{T} < \mathsf{T}_{\mathsf{O}}) = \chi_0(\mathsf{T} > \mathsf{T}_{\mathsf{O}}) + \chi_1(\mathsf{T} > \mathsf{T}_{\mathsf{O}})\mathfrak{O} + \chi_2(\mathsf{T} > \mathsf{T}_{\mathsf{O}})\mathfrak{O}\mathfrak{O} + \dots$$

Multiple order parameters \mathcal{O}_1 , \mathcal{O}_2 ,... ($T_{O1} < T_{O2} < ...$):

$$\chi(\mathsf{T} < \mathsf{T}_{01}) = \chi_0(\mathsf{T} > \mathsf{T}_{01}) + \chi_1(\mathsf{T} > \mathsf{T}_{01})\mathfrak{O}_1 + \dots$$

= $\chi_{00}(\mathsf{T} > \mathsf{T}_{02}) + \chi_{01}(\mathsf{T} > \mathsf{T}_{02})\mathfrak{O}_2 + \dots$
+ $\chi_{10}(\mathsf{T} > \mathsf{T}_{02})\mathfrak{O}_1 + \chi_{11}(\mathsf{T} > \mathsf{T}_{02})\mathfrak{O}_2\mathfrak{O}_1 + \dots$
:

Analogue contributions for ED, MD and EQ:

Up to 12 χ -tensors for two order parameter compounds!

SHG in a Multiferroic Compound

ED contribution for magnetic ferroelectrics:

 $\vec{P}^{NL}(2\omega) = \varepsilon_0 \left[\hat{\chi}(0) + \hat{\chi}(\wp) + \hat{\chi}(\wp) + \hat{\chi}(\wp) + \dots \right] \vec{E}(\omega) \vec{E}(\omega)$

- $\chi(0)$: Paraelectric paramagnetic contribution _____ always allowed
- $\chi(P)$: (Anti)ferroelectric contribution
- $\chi(\ell)$: (Anti)ferromagnetic contribution
- $\chi(\mathcal{P}\ell)$: Magnetoelectric contribution

always allowed
 allowed below
 the respective
 ordering temperature

- SHG allows simultaneous investigation of magnetic and electric structures
- Selective access to electric and magnetic sublattices
- Ferroelectromagnetic contribution reveals the magneto-electric interaction between the sublattices

Part III - Experimental Techniques

- Spectral sensitivity
- Freedom of k-direction and light polarizations
- Temperature variation
- External magnetic and electric fields
- Optical phase sensitivity
- Spatial resolution
- Transmission & Reflection measurements
- Surface & interface sensitivity
- Time resolution

Basic Experimental Setup

Spectroscopy & Imaging Setup

Magnet cryostat

CCD camera

BBO-OPO Nd:YAG laser

Optical Parametric Oscillator

Passive tuneable laser light source in the range 400nm - 3000nm

Parametric oscillation of transparent nonlinear crystal with high $\chi^{(2)}$ coefficients (here: betabarium-borate β -BaB₂O₄)

Part III - Experimental Techniques

Nonlinear optical phase measurements

Domain Imaging

Example: Ferroelectric 180° domains:

 $E(2\omega, +\mathcal{P}) \propto \chi(+\mathcal{P}) E(\omega)E(\omega) = +\chi(|\mathcal{P}|)E(\omega)E(\omega)$ $E(2\omega, -\mathcal{P}) \propto \chi(-\mathcal{P}) E(\omega)E(\omega) = -\chi(|\mathcal{P}|) E(\omega)E(\omega)$ $180^{\circ} Phase difference!$

Domains distinguishable by the phase of the nonlinear signal.

Phase Sensitive Measurements

SH-source term:

 $\mathsf{S}^{\mathsf{NL}}(2\omega) \propto \chi(2\omega)\mathsf{E}(\omega)\mathsf{E}(\omega)$

SH intensity:

 $\textbf{I}_{SH} \propto |S^{NL}|^2 \propto |\chi \; EE|^2 = |\chi|^2 \, \textbf{I}_0^{\ 2}$

Problem: Only direct measurement of intensity \Rightarrow No direct access to the phase!

Solution: Interference measurements

Phase Sensitive Measurements

Ground state

Sample source term:

 $S^{S}(2\omega) \propto \chi^{S}(2\omega) E(\omega)E(\omega)$

Reference source term:

 $S^{R}(2\omega) ∝ \chi^{R}(2\omega) E(\omega)E(\omega)$

<u>Total intensity:</u> $I_{SH} \propto |S^S + S^R|^2 \propto |\chi^S + Ae^{i\psi} \chi^R|^2 I_0^2$ $= (|\chi^{S}|^{2} + |A\chi^{R}|^{2} + 2\chi^{S}\chi^{R}\cos\psi) I_{0}^{2}(\omega)$

always > 0 interference term

Experimental access to amplitude A and phase ψ !

Experimental Realisation

PSU = Phase Shifting Unit:

Induces phase shift Ψ_{rel} between E(ω) and E^S(2 ω) and therefore between E^S(2 ω) and E^R(2 ω)

Experimental realisation:

- Gas pressure cell
- Rotated glass plates or shifted glass wedges
- Distance variation

Experimental Realisation

<u>Measuring SH-intensity I as function of Ψ_{rel} :</u>

 $\mathrm{I}(\Psi_{\mathrm{rel}}) \propto |\mathrm{E}^{\mathrm{S}} + \mathrm{E}^{\mathrm{R}}|^{2} = |\mathrm{E}^{\mathrm{S}}|^{2} + |\mathrm{E}^{\mathrm{R}}|^{2} + 2 |\mathrm{E}^{\mathrm{S}}||\mathrm{E}^{\mathrm{R}}| \cos \left(\Psi + \Psi_{\mathrm{rel}}\right)$

with $\Psi = \Psi^{S} + \Psi^{R} + \Psi_{0}$

 $(\Psi_0 \text{ by PSU and distance} \text{ sample} \leftrightarrow \text{reference})$

For $\Psi_0 \rightarrow 0$ and if Ψ^R known:

Absolute measurement of Ψ^{S}

Spatially resolved: e.g. AFM domain in YMnO₃

Disadvantages of the Standard Methods

- Only measurements with external reference (multiferroics)
- Distance sample ↔ reference reduces image quality
- Loss of coherence due to large sample ↔ reference distance ⇒ week interference signal
- Mechanical/optical instabilities due to moving parts

Phase Resolved SH Imaging

Soleil-Babinet compensator as PSU behind sample & reference:

- \Rightarrow Sample \leftrightarrow reference distance can be reduced to zero
- \Rightarrow Measurements with external or *internal* reference
- E^s and E^R are projected on common direction via an analyzer:
- \Rightarrow Optimization of signal contrast

Soleil-Babinet Compensator

Quartz assembly made of two wedged crystals (2a, 2b) + a compensation crystal

Phase shift Ψ :

 $\Psi = \frac{2\pi}{\lambda} (\mathsf{d}_2 - \mathsf{d}_1) \Delta \mathsf{n}$

- d_1 : Thickness compensation crystal
- d_2 : Total thickness of the wedges
- λ : Wavelength

 $\Delta n = n_e - n_o$: Refrective index missmatch

Signal Optimization

Interference:

$$\mathbf{I}(\mathcal{G}) = \left| \mathbf{E}^{\mathsf{R}'}(\mathcal{G}) + \mathbf{E}^{\mathsf{S}'}(\mathcal{G}) \right|^{2} = \\ = \left| \mathbf{E}_{0}^{\mathsf{R}'} \sin \mathcal{G} \right|^{2} + \left| \mathbf{E}_{0}^{\mathsf{S}'} \cos \mathcal{G} \right|^{2} + 2 \left| \mathbf{E}_{0}^{\mathsf{R}'} \right| \left| \mathbf{E}_{0}^{\mathsf{S}'} \right| \sin \mathcal{G} \cos \mathcal{G} \cos \left(\Psi^{\mathsf{R}} - \Psi^{\mathsf{S}} \right)^{2} \right|^{2}$$

Contrast:
$$C = \frac{I_{max}}{I_{min}} = 1...\infty$$

Visibility: $V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = 0...1$

I

Maximum for $E^{R'}(\vartheta_0) = E^{S'}(\vartheta_0)$

Phase Resolved SH Imaging (Setup)

- Measurements with external or internal reference
- Reference outside cryostat
 ⇒ high degree of experimental freedom
- Achromatic beam imaging for improved image quality and compensation of loss of (spatial) coherence

Coherence Effects

Interference including the effect of coherence:

$$I(\Psi) = I_1 + I_2 + 2\sqrt{I_1 I_2} |\gamma| \cos(\Psi_0 + \Psi)$$

Coherence: $|\gamma|$

Visibility:

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{2\sqrt{I_1 I_2}|\gamma|}{I_1 + I_2}$$

For
$$I_1 = I_2 \Rightarrow V = |\gamma|$$

|γ| > 99% possible!

Phase-Resolved SH Imaging (Results)

Phase-Resolved SH Imaging (Results)

Sample

Sample + Reference

Reference

imaging direct

Phase-Resolved SH Imaging (Summary)

- Large working distances (~1 m)
- More experimental freedom
- High signal contrast
- Improved image quality
- Allows use of broadband laser sources with poor beam quality

Part III - Experimental Techniques

Nonlinear imaging & the problem of optical resolution

Limit of Optical Resolution

Optical resolution is limited by diffraction:

 $d_{\min} = 0.61 \frac{\lambda}{A}$ with numerical aperture $A = n \sin \varphi$

Typical values of A:

- Standard lens (f=200mm, Ø=50mm): A ≈ 0.2
- Photo lens: A ≈ 0.7
- Microscope objective up to A = 1.4

3.0 Resolution limit d_{min} (µm) 2.5 A = 0.2A = 0.72.0 A = 1.41.5 1.0 0.5 0.0 800 1000 1200 1400 1600 200 400 600 Wavelength λ (nm)

 \Rightarrow Resolution limit down to some hundred nm

SHG Microscopy

S. Kurimura & Y. Uesu J. Appl. Phys. 81, 369 (1997)

SHG Microscopy

Ferroelectric stripe domains in a $LiTaO_3$ QPM device

S. Kurimura & Y. Uesu J. Appl. Phys. 81, 369 (1997)

Going Beyond the Optical Resolution Limit

Tip- enhanced near-field microscope

[Neacsu, Reider, and Raschke, Phys. Rev. B 71, 201402 (2005)]

Imaging of FEL Domains in YMnO₃

[Neacsu, Reider, and Raschke, Phys. Rev. B 71, 201402 (2005)]

Imaging of FEL Domains in YMnO₃

[Neacsu et.al., Nature Materials, submitted]

Domain dimensions:

- > 100 nm wide (y)
- ~ 1µm long (z)

Ferroelectric domains

Extended along the hexagonal axis z M

Parallel with p_z

Part III - Experimental Techniques

Surfaces & interfaces

First Magnetic SHG Experiment

VOLUME 67, NUMBER 20

PHYSICAL REVIEW LETTERS

11 NOVEMBER 1991

Effects of Surface Magnetism on Optical Second Harmonic Generation

J. Reif, J. C. Zink, C.-M. Schneider, and J. Kirschner

Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, W-1000 Berlin 33, Germany (Received 21 May 1991)

We report on the first experiments showing the influence of surface magnetization on optical second harmonic generation in reflection at a Fe(110) surface. The magneto-optical Kerr effect modifies the hyperpolarizability of the surface in the optical field, leading to a dependence of the second harmonic yield on the direction of magnetization relative to the light fields. For the clean surface an effect of 25% was determined, which decays exponentially with surface contamination by the residual gas, thus demonstrating the high surface sensitivity of this technique.

PACS numbers: 75.30.Pd, 78.20.Ls, 78.65.Ez

LASER SHOTS / CYCLE

Observation of a second harmonic contribution which depends on the magnetization of a Fe(001) surface

Small signal, but with high contrast \rightarrow typical for SHG!

2878

Linear Magneto-Optical Effects

Dielectric function :	$\tilde{\mathbf{s}} = \varepsilon$	(1	iQ	0)
		-iQ	1	0
		0	0	1,

- Rotation of plane of polarization upon transmission/reflection on magnetized medium
- Described by non-diagonal elements of 3×3 matrix
- $Q \ll 1 \Rightarrow$ small effect (10⁻²...10⁻⁵)

R. Vollmer in "Nonlinear Optics in Metals", Clarendon (1998)

Linear Magneto-Optical Effects

Kerr rotation and ellipticity

$$\Phi_{Ks} = \Phi'_{Ks} + i\Phi''_{Ks} = \frac{E_p^{(r)}}{E_s^{(r)}}$$
$$\Phi_{Kp} = \Phi'_{Kp} + i\Phi''_{Kp} = \frac{E_s^{(r)}}{E_p^{(r)}}$$

in Metals", Clarendon (1998)

Nonlinear Magneto-Optical Effects

Generation of reflected SH wave:

$$P_{i}(2\omega) = \chi^{(2)}_{ijk}(M) E_{j}(\omega) E_{k}(\omega)$$

with $\chi^{(2)}(-M) = -\chi^{(2)}(+M)$ $\Rightarrow \chi^{(2)}$ is 3rd-rank c-tensor

NOMOKE:

NOnlinear Magneto-Optical Kerr-Effect

Hugh effects of several tenth of degrees!

universitätbonn

B. Koopmans et al. Phys. Rev. Lett. 74, 3692 (1995)
NOMOKE on a Polar Ferromagnet

- GaFeO₃:
- Pyroelectric
- Ferromagnetic $T_c = 205 \text{ K}$
- Crystallographic + magnetic SHG:

$$\vec{P}(2\omega) = \epsilon_0 \begin{pmatrix} \chi^m_{xxx} \\ \chi^{cry}_{yxx} + \chi^m_{yxx} \\ 0 \end{pmatrix} E_x^2(\omega).$$

Ogawa, et.al., Phys. Rev. Lett. 92, 047401 (2004)

Magnetic Domain Imaging

Ogawa, et.al., Phys. Rev. Lett. 92, 047401 (2004)

Transition metal oxide superlattices: Charge transfer \Rightarrow **polarization** orbital ordering \Rightarrow **magnetization**

Time & spatial inversion symmetry only broken at AB-interface \Rightarrow **SHG**

Polarization SHG $\propto P$ $P_p^{nm}(2\omega) \propto \chi^{nm} E_s(\omega) E_s(\omega)$

Magnetic SHG $\propto T=P \times M$ $P_s^m(2\omega) \propto \chi^m E_s(\omega) E_s(\omega)$ $\chi^m \coloneqq \chi^m(B)$

Part III - Experimental Techniques

Ultrafast nonlinear optics

Technological Needs

- data storage
- data transfer
- etc.

Where are the physical limits?

Timescales

Time Resolved Pump-Probe Experiments

Three-Temperature Modell

pump-probe scheme Absorption system state phonon $T_p(t)$ pump electron pump $T_{e}(t)$ spin $T_{\rm s}(t)$ probe Crystallographic SHG **Magnetic SHG** $P(t) \sim \chi^{e}[T_{e}(t)] E E$ $P(t) \sim \chi^m[T_s(t)] E E$ time delay

Experimental Setup

fs-Laser System

