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1. Commensurate, incommensurate, and other phases: 
A short overview

The definition of “commensurate” (CM) needs an underlying periodic structure as 
reference.

Various quantities. e.g. magnetic moments, lattice displacements, surface 
adsorbed ions, etc. can assume an ordered state that is commensurate (or not) 
with the periodic reference structure.

A commensurate modulation has a periodicity of  n/m*b, where b is the 
fundamental length unit of the periodic reference structure.

Mathematical problem:
The rational numbers (n/m) are dense, i.e. next to an irrational number there exist 
rational numbers arbitrary close.

Experimentally it is not possible to distinguish between truly incommensurate (ICM) 
or higher order CM periodicities.

It seems practical to restrict CM modulations to the lowest orders of n/m. e.g. 1/2, 
1/3, 1/4, 2/3, ...

Incommensurate (ICM) modulations can than be defined as small deviations from 
the CM orders, the modulation vector given as  n/m ± δ (δ small)



Example:   Atoms connected by harmonic forces (springs) in a periodic potential

Frenkel & Kontorowa (1938),

Frank & Van der Merwe (1949)
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Characteristic cases:

V=0 : Harmonic interactions favors a lattice constant a0 which is ICM with b
Bragg spots in scattering experiments appear at  Q = 2πN/a0 , not 
coinciding with G = 2πN/b of the periodic potential

V large: Atoms may settle into a CM structure with the average a being a simple
fraction of b. Diffraction pattern of substrate and adsorbed layer has 
infinite set of coinciding Bragg sheets.

CM,   2a=3b

ICM

chaotic



V > 0, not too large:
Potential will modulate the chain, the average period, a ≠ a0, can be CM
or ICM.

In the general ICM structure the nth atomic position is

with f a continuous and periodic function with period b.

Bragg sheets are at positions

Bragg spots for N ≠ 0 form satellites around spots from the basic lattice (potential).

Note that the energy does not depend on the phase α and the chain is not “pinned”.

Chaotic states: (very strong potential, metastable)
Atoms are randomly distributed among the potential minima
Formation of CM chain sections with random length and domain wall
distribution
Average period is in general ICM with the potential
Chaotic phase is “pinned” to the potential
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How does the periodicity a (or the wave vector q=2π/a) change if model parameters “x” (e.g. 
a0, V, b, T) are tuned ?

If x goes from x1 to x2, q goes from q1 to q2 - but how ?

Typical Examples

The floating phase:

q varies continuously with x passing through an
infinity of CM (ICM) values without locking into 
specific CM phases.
(may occur in 2 dimensions)

The harmless staircase:

q assumes a finite number of CM values, the
periodicity is locked in intervals of x
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The incomplete devil’s staircase :

q/2π locks in at an infinity of finite intervals of x,
it remains constant and rational in these intervals,
however, there exist floating phases between the CM 
intervals

The complete devil’s staircase :

The infinity of locked CM portions fills the whole interval
of x

Experimentally it is nearly impossible to distinguish different cases, however, hysteresis 
effects can be observed (they are expected in the harmless and complete devils staircase).



Most examples of CM and ICM phases have been found in magnetic systems :

Temperature dependence of the wave vector of the 
magnetic structure of Er

Note the CM → ICM transition at 24 K

Most “devilish” staircase in the sinusoidal magnetic
structure of CeSb.
q jumps between different (up to 7) CM values.

CM↔ICM

Fischer et al., 1978

Habenschuss et al., 1974



Other examples in condensed-matter physics :

1)   Adsorption of rare-gas monolayers (Krypton) on graphite (2-dimensional realization)

(a)   CM “√3 structure” with Kr occupying 1/3 of the graphite honeycomb cells

(b)   Incommensurate phase (higher density)



Due to the layered structure of graphite the 
intercalation of metal atoms between the 
honeycomb carbon planes is easily achievable.

Within one layer CM and ICM structures are 
realized, additional order along the c-axis results 
in “staging” orders of the metal layers.

3-D system as compared to 2-D for surface 
adsorption.

2)   Staging in graphite intercalation compounds

ICM order is a periodic distortion of the 
lattice due to competing short-range forces
(in insulators) or due to the formation of a 
charge density wave, “Peierls effect”, in 
metals (e.g. TaSe2, NbSe3).

In many magnetic ICM systems the lattice 
exhibits a similar ICM distortion with 

qlatt = 2 qmag

because of strong spin-lattice coupling

3)   Displacive incommensurability

CM (dimerized) lattice

ICM lattice modulation

uniform (periodic) lattice



2.   The CM → ICM transition in the Frank & Van der
Merwe model
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δ = (2π/b) (a0 - b)  is the “natural misfit” ,  and p = 1

φ(n) = 0 describes the commensurate phase,    φ(n) = δn is the unperturbed ICM phase

The ground state is defined by the minimum of H, i.e. by:
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= 1-D sine-Gordon equation



One of the solutions of the sine-Gordon equation is the single soliton :
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The soliton is a domain wall at n=0 
separating two CM regions with    
φ = 0   and   φ = 2π/p

The more general solution is a “soliton lattice” :

single soliton solution

soliton lattice

Regularly spaced domain walls 
(solitons) separate the  commensurate 
regions 

The distance l is related to the average 
misfit  <q> = (2π/b) (a – b) by

<q> = 2π/pl         (soliton density)



The energy density near the CM phase ( <q> << 1 ) is :   (Bak & Emery, 1976)
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soliton energy effective soliton repulsion

The CM → ICM transition takes place when E changes sign from E > 0 (CM) to E < 0 (ICM, 
soliton phase), i.e.
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Note:
The soliton-like modulation is strongly
anharmonic giving rise to high order harmonics
in scattering experiments (in contrast to the
sinusoidal modulation for V = 0).

High-order harmonics in 
magnetic scattering of Er
(Habenschuss et al., 1974)



3.   Incommensurate magnetic phases : 
The anisotropic Ising model with competing interactions 

ANNNI model: (Elliot, 1961)

Ising spins with ferromagnetic nearest-neighbor (J1) 
and antiferromagnetic next-nearest-neighbor (J2) 
interactions along one particular axis.
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Ground state solution:

Phase transition from FM ( q = 0 ) to ↑↑↓↓
(q = 1/4 )  at  J1 = 2 J2

At J1 = 2 J2 the ground state is degenerated
and consists of successive ↑↑↑... and ↓↓↓... 
domains (formation of domain wall does not 
cost any energy !)

No exact solution for T > 0  !

FM

E-type

J1<0 J2>0

Ground state energy (Ising limit):
FM: N (J2-|J1|)

       E-type:      - N J2

Transition from FM to E-type at |J1| = 2 J2

Same arguments hold for J1 > 0   (AFM to E-type)



High-temperature (series expansion) solution   (Redner & Stanley, 1977)

Three regions in the phase diagram (T/J1 vs. J2/J1) :

(i) Disordered paramagnetic phase at high T

(ii) Ferromagnetic phase for J2/J1 < 0.5

(iii) “Modulated” phase with periodic modulation of the wave
vector q = 2π(0,0,q)

All three phases meet at a Lifshitz point, P

q = 0 at the left side of P, but increases continuously to ¼
for J2/J1 → .

At T=0 :   q = ¼ for all  J2/J1 > 0.5

How does the periodicity (q) in the modulated phase 
change if the temperature is lowered ?

0

q

1/4

q = 0           q = 1/4



Mean-field theory (for the modulated phase):  (Bak & von Boehm, 1980; Rasmussen & Knak-Jensen, 1981)

Mean-field approximation – neglect second order fluctuations
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The stability of the q = 1/4 CM (↑↑↓↓) phase can be estimated using a trial function for the Mi :

( ) CCziziArM +⎟
⎠
⎞

⎜
⎝
⎛=

4
2exp)(exp)( πϕ

This trial Ansatz for M keeps the amplitude of M constant and allows for a variation of the 
phase φ with the coordinate z

In the CM phase:  φ = const.,  in the ICM phase:  φ = 2πδz   ( → q = ¼ + δ )



In the continuum limit and expanding F to fourth order in M :dzdzz /)1()( ϕϕϕ =−−
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Note the similarity with the Frank & Van der Merve model !

The phase function φ(z) minimizing the free energy is the soliton lattice.

Near the CM phase boundary the free energy is:
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How does the soliton solution look like ?

The domain wall has the structure

↓ ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓



The (approximate) analytic solution results in a 
continuous function q(T), however, the numerical 
solution of the mean-field model reveals the 
staircase behavior:

A sequence of “locked” commensurate phases is 
realized with increasing temperature, ICM phases 
appear closer to Tc in between high-order CM 
phases.

J2/J1 = 0.7

analytical

numeric solution

The global Mean-field phase diagram is 
constructed from numerical calculations:

The dark areas of the “Devil’s Tree”
represent high-order CM phases and ICM 
phases in between  → Incomplete Devil’s 
Staircase

Near T=0 and J1=2J2 there is a multicritical
point where an infinity of CM phases exist 
(Villain & Gordon, 1980) with CM modulations of 
q=l/2(2l+1) (Fisher & Selke, 1980)

This point is highly unstable with respect to 
perturbations

Devil’s Tree



4.   Helical (non-collinear) magnetic phases : 
The Heisenberg model with frustration and anisotropy

The Ising model (by definition) cannot describe any non-collinear spin structures, as 
observed in the ferroelectric phases of some multiferroics

Extension to Heisenberg model, for example:
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J1 < 0  is the nearest neighbor ferromagnetic exchange interaction

J2 > 0 is the next-nearest neighbor AFM exchange

K  is the uniaxial anisotropy,   and H is the external magnetic field

This model, although too simple to be applied to “real” multiferroic compounds, has a 
wealth of solutions describing different magnetic orders, including collinear CM and ICM 
structures as well as non-collinear (helical) spin orders.

First reports of helical magnetic orders as solutions of the Heisenberg model by Kaplan 
(1959), Villain (1959), and Yoshimori (1959).  



Early solutions reveal a global phase diagram with a Lifshitz point :   
(Hornreich, 1975; Redner & Stanley, 1977)

(i)   The transition across “1 – 2” (Tλ) is a second order phase
transition with conventional critical behavior 

(ii)  The critical behavior changes dramatically near the 
Lifshitz point “L”, where the three phases meet

(iii) The modulation vector “k” is zero (FM) between “1” and “L”
but it continuously changes from “L” towards “2”

(iv) The control parameter “P” can be pressure, composition,
or the ratio of competing exchange coupling parameters

Redner & Stanley derived the corresponding phase diagram
for the Heisenberg model with competing NN and NNN exchange :

Jz / Jz’

second order

first order

High-temperature series expansion provide small 
corrections to the mean-field theory

Despite the small corrections, the
mean-field theory seems to be an
adequate description



Ground state of the isotropic Heisenberg model
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Note:  Si is classical spin vector (for simplicity)
J is not limited to nearest neighbors

Fourier transformation into reciprocal space:
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The ground state is defined by the minimum of energy, with the condition

The minimum of E is obtained for the q = ± Q that maximizes the coupling J(q) :
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In real space: [ ]
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The equations above describe an elliptic helical order of spins with wave vector Q, which 
is circular for the condition Sn

2 = const. We may choose z ┴ plane of circle:
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α “Screw structure” (Yoshimori)

Orientation of magnetization plane and Q 
not always perpendicular. 

“Proper screw”: S ┴ Q

“Cycloidal screw”: S || Q  (breaks spatial 
inversion symmetry !)

The magnitude of Q is solely determined by the exchange coupling constants and is 
therefore in general incommensurate with the lattice !



Example:     A spin system consisting of layers with Q perpendicular to the layers (WMnO4)

q
J0 = sum of J(rij) over all sites in one 
layer containing site j

J1 = sum over all J(rij) of site i and all 
sites of the neighboring layer

J2 similar for second neighbor layer

...

d distance between planes

...)2cos(2)cos(2)( 210 +++== ∑ − dqJdqJJeJqJ dqi

ν

ν
ν

Limiting the interaction to next-nearest neighbors (J2), J(q) is maximized by:

[ ] 0)sin()cos(4 21 =+ dQdQJJ

This equation has three solutions for 0 ≤ dQ < 2π :

(i)   Q = 0 ferromagnetic spin order

(ii)  Q = π/d antiferromagnetic order

(iii) Helical arrangement with ICM, for |J1| < |4 J2|( ) 21 4/cos JJdQ −=

d



Ground state energy:

(i)    Q = 0 : J(Q) = J0 + 2J1 + 2 J2 E = - N S2 J(Q)

(ii)   Q = π/d : J(Q) = J0 – 2 J1 + 2 J2

(iii)  Q = d-1 arccos (- J1/4J2) J(Q) = J0 – (J1
2/4J2) -2 J2 |J1| < |4 J2|

If J2 > 0 (FM NNN coupling), the ground state is FM (for J1 > 0)  or  AFM (for J1 < 0)
If J2 < 0 (AFM coupling), the helical state has lowest energy for  |J1| < |4 J2| .

Note the difference to the ANNNI model:

Only two commensurate phases exist at T=0 in the ANNNI model:

FM (AFM) for |J1| > |2 J2| , and the CM  ↑ ↑ ↓ ↓ solution otherwise.

The FM (AFM) states of the isotropic (Heisenberg) model becomes unstable at much
lower   |J2| = |J1| / 4   (instead of   |J1| / 2   in the ANNNI model)

ANNNI Heisenberg



MnWO4

Phase sequence:

PM → SIN (incommens., collinear)        
→ Helical (incommens., non-collin.)     
→ E-type (commensurate, collinear)

In ICM phases:  Q ~ 0.22

The spiral phase is ferroelectric !

Competing exchange interactions:

FM nearest neighbor  (J1)

AFM next nearest neighbor (J2)

Strong uniaxial anisotropy (K)

Strong magnetic field effect (if 
oriented along the easy axis)

5.   Can these simple models describe real multiferroics ?
Example: MnWO4 and Mn1-xFexWO4

Taniguchi et al., 2006; Arkenbout et al., 2006



The observed phase sequence     SIN (collinear) → Helical → ↑ ↑ ↓ ↓ cannot be obtained 
from either the ANNNI or the isotropic Heisenberg model

The  ↑ ↑ ↓ ↓ order in the ground state suggests a strong uniaxial anisotropy

The Heisenberg model with uniaxial anisotropy does interpolate between the isotropic limit 
and the ANNNI model :
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K > 0   favors the alignment of spins along one axis (z)

K < 0   would favor the in-plane anisotropy (x-y plane)

For   K >> J1 , J2 the spins are forced into one direction  =  ANNNI model

K = 0   results in the isotropic Heisenberg model



The effects of substitutions   — Why Mn1-xFexWO4 ?

(i)    The end members, MnWO4 and FeWO4, are isostructural and a solid solution does exist

(ii)   Both end members have different magnetic structures

(iii)  Replacing Mn with Fe does allow for the control of exchange coupling and anisotropy 
parameters

(iv)  Our main interest is the stability of the helical (ferroelectric) phase

Synthesis of large single crystals of Mn1-xFexWO4

Garcia_Matres et al., 2003

x = 0.035

x = 0.05



A small concentration of Fe ( 4 % ) destroys the helical (FE) phase completely at H = 0 :
(Chaudhury et al., 2008)
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The helical, ferroelectric phase covers a very 
small region in the phase diagram

The suppression by this little Fe content 
indicates how fragile and susceptible this phase 
is as may be expected for frustrated spin 
systems
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The recovery of the helical (ferroelectric) phase in magnetic fields :     (Chaudhury et al., 2008)
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In magnetic fields along the easy axis the 
FE phase of Mn0.9Fe0.1WO4 is completely 
restored.

Magnetic data reflect the field-induced FE 
transition and prove that is associated with 
a major change of the magnetic structure

From the dielectric and magnetic measurements we conclude that the external field restores 
the helical spin phase that allows for the ferroelectric displacements via the spin-lattice 
coupling.

This needs to be proven by the detailed investigation of the magnetic structure, e.g. by 
neutron scattering experiments.



Magnetic and ferroelectric phase diagram of Mn0.9Fe0.1WO4 (Chaudhury et al., PRB 2008)

ICM / 
SIN

↑↑↓↓

helical FE phase

Magnetic field induced ferroelectric phase shoud be helical with ICM spin modulation.

This needs to be confirmed by neutron scattering experiments.



Can these complex physical phenomena be qualitatively 
described by a simple model ?

The minimum requirements:

(i)  Heisenberg-type spins and exchange interactions to allow for non-collinear order

(ii) Competing nearest (FM) and next-nearest (AFM) neighbor interactions

(iii) Strong uniaxial anisotropy to come close enough to the Ising (ANNNI) limit to 
describe the  ↑ ↑ ↓ ↓ - type ground state.

(iv) External magnetic field (to be oriented along the easy axis of the spins

Evaluation of the model in the ground state, at finite temperatures, and in magnetic 
fields.



Heisenberg model with (competing) nearest neighbor (FM) and next-nearest 
neighbor (AFM) interactions, uniaxial anisotropy, and external magnetic fields
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Mean field approximation:
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For spin 1, eigenfunctions |-1>, |0>, |1> 
(i.e. m = -1, 0, +1)
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Eigenvalues λi(n) :
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Note: This equation has to be solved for each single spin at location n.

The internal fields hn couple the solution to the neighboring spins at n ± 1, n ± 2

Solve quantum mechanical problem
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Partition function and free energy:
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Mean field equations (self consistency equations for <Sn> :
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Remember !

since hn depend on <Sn±1> and <Sn±2> the self consistency equations for <Sn> 
cannot be solved easily for arbitrary spin orders.

Some special cases:

Ferromagnetic order, FM
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Antiferromagnetic order (AFM, two sublattices A, B):
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Sinusoidal or arbitrary collinear order, spins || z :
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This is (in general) a system of N coupled equations that have to be solve 
simultaneously.

Can be done numerically !



Problems with the numerical solution:

(i)    Iterative solution for N (up to 100) coupled equations, one for each <Sn>,
Convergence sometimes slow, use > 500 iterative steps

(ii)   Free energy of N variables may have many local minima => difficult to find the
absolute minimum in the first run
Solved by repeating iteration many times with random initial spin configurations

Ground state phase diagram ( J1 < 0, J2 > 0, K > 0 ) :
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K – T phase diagram (for J2 = 0.8) :
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Paramagnetic A B

For “A” the phase sequence is :  E-type => helix => SIN => PM     ( MnWO4 )

For “B” it is :   E-type => SIN => PM   , no helical phase !    ( Mn0.9Fe0.1WO4 )

Since only “helix” can induce ferroelectricity, there is no FE in the latter compound.

Magnetic field may stabilize the helical magnetic structure ???



In a frustrated system many states are very close in energy, this explains their 
sensitivity to external fields or perturbations.

Example:

J1 = -1,   J2 = 0.8 ,   K = 0.9 ( path “A” in the phase diagram)
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The transition  (↑↑↓↓) → helical is a first order phase transition.

The next transition helical → sinusoidal is of second order ( <Sx> continuously approaches 
zero).

The transition into the paramagnetic phase is second order ( <Sz> continuously approaches 
zero).



J1 = -1,   J2 = 0.8 ,   K = 1.2 ( path “B” in the phase diagram)
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The helical phase is metastable, the transition from the (↑↑↓↓) phase proceeds directly into 
the sinusoidal phase. The transition is a first order phase transition.

In all cases, the FM phase is never stable (for the parameters chosen).



Question:

Can a magnetic field applied along the easy axis induce a non-collinear 
magnetic order ?

YES !

For example, for J2 = 1 ,   K = 0.8 ,   and  T = 0.8

E-type order is stable for Hz < 0.45

Transition to helical structure takes place at Hz = 0.45
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Field – temperature phase diagram of the model for two characteristic sets of 
parameters

Note that The helical (ferroelectric) phase becomes unstable at high field due to the 
parallel alignment of the spins enforced by the magnetic field.

The high-field transition into a paraelectric phase was indeed observed in MnWO4.



Taniguchi et al., PRB 2008
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The high-field phase 
diagram of MnWO4 is 
surprisingly similar to the 
numerical results.

A number of features seem to be reproduced 
at least qualitatively:

(i) Field-induced transition from the (↑↑↓↓) 
phase to the helical (FE) phase at low T

(ii) Paraelectric high-field phase above 12 T

(iii) Suppression of the SIN phase at 
moderate field values.

The chosen model provides a reasonable 
description of the complex physics of 
magnetic states in substituted Mn1-xFexWO4.



Other examples of field-induced ferroelectric phases:

Delafossite CuFeO2 (Kimura et al., 2006)

The ground state at H=0 is the ↑↑↓↓
modulated CM state (Q = 0.25)

Magnetic fields induce a non-collinear ICM 
phase and ferroelectricity

At higher fields the stable phase is collinear 
again with an ↑↑↑↓↓ (Q = 0.2) modulation

Other collinear phases are observed at higher 
fields  (Mitamura et al., 2007)

Compare the phase sequence with the 
Devil’s tree ! Magnetic field seems to have 
a similar effect as temperature. The helical 
phase between 4-sub and 5-sub reflects 
the additional degree of freedom of the 
Heisenberg spin



The effect of substitution (Al for Fe) is opposite to MnWO4 :   It induces a helical (FE) phase
(Seki et al., 2007; Nakajima et al., 2008)

The spin wave excitations in CuFeO2 have been 
measured and fitted to the Heisenberg model 
with uniaxial anisotropy (Ye et al., 2007)

The phases denoted PD and OPD are 
collinear sinusoidal magnetic structures, 
they are all paraelectric.



Nickel Vanadate Ni3V2O8 (Lawes et al., 2005)

LTI phase is ferroelectric  → for H || a 
the FE phase is induced by H at low T


