Induction and Modulation of Polarization in Ferroelectric Liquid Crystals.

Robert P. Lemieux Chemistry Department, Queen's University Kingston, Ontario, K7L 3N6 CANADA

Chirality

Ranked as the "most beautiful experiment in history", C&EN, 2003, 81, 27-30

Molecular Recognition

Molecular Imprinting

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Brady, P.; Sanders, J.K.M. Chem. Soc. Rev. 1997, 26, 327

Thermotropic Liquid Crystals

PhB: Cr 35 SmC 70.5 SmA 72 N 75 I

PhP1: Cr 58 SmC 85 SmA 95 N 98 I

Thermotropic Liquid Crystals

homeotropic domains

Nanosegregation in Smectic A and C Phases

Chiral Liquid Crystals

Polar Order in the SmC* Phase

Helical State (Non-Ferroelectric)

Surface-Stabilized Ferroelectric State Clark & Lagerwall Appl. Phys. Lett. **1980**, *36*, 899

Induction of a Chiral SmC* Phase

Siemensmeyer, K.; Stegemeyer, H. Chem. Phys. Lett. 1988, 148, 409

Molecular Origins of Polarization: The Boulder Model

Walba, D. M. et al. J. Am. Chem. Soc. 1991, 113, 5471

Molecular Recognition in the SmC* Phase

Dopant

SmC Host

δ_p is independent of host structure

8007

Fig. 6 Tilt-angle-reduced polarization, P_0 vs. x_G for the chiral dopants C7D (\Box, \blacksquare) and S811 (\bigcirc, \bullet) in different host phases⁶ (cf. Fig. 5)

Fig. 11 Polarization, P_0 vs. x_G for the type II-2 dopants AS157 (open symbols) and AS161 (filled symbols) in different host phases; $\Delta T = 5$ K. Host phases: \bigcirc/ Φ , 8007; \diamondsuit/ Φ , BDH-o-F; \square/ \blacksquare , NCB84; $△/ \blacktriangle$, NCB908.

$\delta_{\rm p}$ varies with host structure

Stegemeyer, H.; Meister, R.; Hoffmann, U.; Sprick, A.; Becker, A. J. Mater. Chem. 1995, 5, 2183

Molecular Recognition in the SmC* Phase

Stegemeyer, H.; Meister, R.; Hoffmann, U.; Sprick, A.; Becker, A. J. Mater. Chem. 1995, 5, 2183

Induction of Polarization: Atropisomeric Biphenyls

A

F

Atropisomeric Biphenyl Dopants

 $X = NO_2$, F, Cl, Br, CH₃

QuickTime™ and a GIF decompressor re needed to see this picture

Lemieux, R.P. Acc. Chem. Res. 2001, 34, 845

Vizitiu, D.; Lazar, C.; Radke, J.P.; Hartley, C.S.; Glaser, M.A.; Lemieux, R.P. Chem. Mater. 2001, 13, 1692

Assignment of Absolute Configuration

Hartley, C.S.; Wang, R.; Lemieux, R.P. Chem. Mater. 2004, 16, 5297

Conformational Asymmetry

D. Vizitiu, C. Lazar, J.P. Radke, C.S. Hartley, M.A. Glaser, R.P. Lemieux Chem. Mater., 2001, 13, 1692

Polarization Power: Host Dependence

D. Vizitiu, C. Lazar, B.J. Halden, R.P. Lemieux J. Am. Chem. Soc. 1999, 121, 8229

Polarization Power: Host Dependence

D. Vizitiu, C. Lazar, B.J. Halden, R.P. Lemieux J. Am. Chem. Soc. 1999, 121, 8229

Chiral Nematics Analogy

in

P-helicity

helical pitch

Gottarelli, G.; Hibert, M.; Samori, B.; Solladié, G.; Spada, G.P.; Zimmermann, R. J. Am. Chem. Soc.. 1983, 105, 7318

Polarization Power: Correlation with SmC* Pitch

helical pitch

150 μ m film viewed by polarized microscopy (100 \times)

QuickTime™ and a Photo - JPEG decompressor are needed to see this ninture

Polarization Power: Correlation with SmC* Pitch

D. Vizitiu, C. Lazar, B.J. Halden, R.P. Lemieux J. Am. Chem. Soc. 1999, 121, 8229

Polarization Power: Correlation with SmC* Pitch

 $X = NO_2$, F, CI, Br, CH₃

Effect of Chirality Transfer

(i) Polar Ordering of the Host

(ii) Chirality Transfer Feedback

shift in conformational equilibrium

Probe Experiment: PhP1 Mimic

Total Polarization = $P_{\rm S}$ (C9) + $P_{\rm S}$ (MDW950)

Hartley, C.S.; Lazar, C.; Wand, M.D.; Lemieux, R.P. J. Am. Chem. Soc. 2002, 124, 13513

Probe Experiment: PhP1 Mimic

MDW950 (Displaytech)

Thompson, M.; Hegmann, T.; Lemieux, R.P., unpublished results

No Perturbation: Hypothetical

+

MDW950

No Perturbation: Hypothetical

+

MDW950

Effect of Chirality Transfer

(i) Polar Ordering of the Host

(ii) Chirality Transfer Feedback

shift in conformational equilibrium

Probe Experiment: Hexamethyl Dopant

 δ_p/μ_\perp = 440 nC/cm²•D δ_p/μ_\perp = 70 nC/cm²•D

Hartley, C.S.; Lazar, C.; Wand, M.D.; Lemieux, R.P. J. Am. Chem. Soc. 2002, 124, 13513

Probe Experiment: Hexamethyl Dopant

Probe Experiment: Hexamethyl Dopant

Effect of Chirality Transfer

(i) Polar Ordering of the Host

(ii) Chirality Transfer Feedback

shift in conformational equilibrium
Analogy to Molecular Imprinting ?

Chiral Molecular Imprinting

Chirality Transfer Feedback

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Induction of Polarization: 2,2'-Spirobiindan-1,1'-diones

Conformational Asymmetry

D. Vizitiu, C. Lazar, J.P. Radke, C.S. Hartley, M.A. Glaser, R.P. Lemieux Chem. Mater., 2001, 13, 1692

2,2'-Spirobiindan-1,1'-dione Dopants

6,6'

Conformational Analysis: 5,5' vs 6,6'

Synthesis

77%

Stereochemistry: Exciton Chirality

N. Harada and K. Nakanishi, *Circular Dichroic Spectroscopy: Exciton Coupling in Organic Photochemistry*, University Science Books, New York, 1983

Dopant-Host Compatibility

Dopant-Host Compatibility

 2 H NMR @ $T-T_{C}$ = -10 K

 2 H NMR @ $T-T_{C}$ = -10 K

 2 H NMR @ $T-T_{c}$ = -10 K

²H NMR in a Chiral Nematic Host: Poly-γ-Benzyl-L-Glutamate

Figure 4. Proton-decoupled ²H NMR spectra in PBLG/CH₂Cl₂ solvent of (a) racemic C₆D₅-CHD-OH at T = 300 K, and (b) nonchiral C₆D₅-CHD₂-OH at T = 306 K.

Figure 2. ${}^{2}H-{}^{1}H$ partial spectrum of perdeuterated ethanol dissolved in the PBLG/CDCl₃ phase. A Gaussian filtering and zero filling to 8K data points were used to improve the spectral appearance and the digital resolution. (*, o) Components of doublets belonging to the methylene group. (Δ) Components of the doublet belonging to the methyl group. The measured quadrupolar splittings for the –OD group and CDCl₃ were 765.8 and 841.3 Hz, respectively. Only the shielded component of each doublet is shown in the figure.

Czarniecka, K.; Samulski, E.T. *Mol. Cryst. Liq. Cryst.* **1981**, *63*, 205. Meddour, A.; Canet, I.; Loewenstein, A.; Péchiné, J.M.; Courtieu, J. *J. Am. Chem. Soc.* **1994**, *116*, 9652. Merlet, D.; Loewenstein, A.; Smadja, W.; Courtieu, J.; Lesot, P. *J. Am. Chem. Soc.* **1998**, *120*, 963.

²H NMR in a Chiral Nematic Host: Poly-γ-Benzyl-L-Glutamate

of (a) racemic C₆D₅-CHD-OH at T = 300 K, and (b) nonchiral C₆D₅-CHD-OH at T = 306 K.

200

100

0 Hz -100

-200

Czarniecka, K.; Samulski, E.T. *Mol. Cryst. Liq. Cryst.* **1981**, *63*, 205. Meddour, A.; Canet, I.; Loewenstein, A.; Péchiné, J.M.; Courtieu, J. *J. Am. Chem. Soc.* **1994**, *116*, 9652. Merlet, D.; Loewenstein, A.; Smadja, W.; Courtieu, J.; Lesot, P. *J. Am. Chem. Soc.* **1998**, *120*, 963.

Evidence of Chirality Transfer ?

-60000 -40000 -20000 0 20000 40000 60000

10 mol%

-60000

-40000

-20000

0 Hz

5 mol%

20000

40000

60000

diastereotopic in the SmC* phase due to chirality transfer ??

Polarization Power @ $T-T_{\rm C} = -10$ K

C₄H₉O OC₈H₁₇

PhP1

Polarization Power @ $T-T_{\rm C} = -10$ K

 C_4H_9O \sim N OC_8H_{17}

PhP1

Conformational Steric Demand

Conformational Steric Demand

Polarization Power @ $T-T_{\rm C} = -10$ K

 $C_4H_9O \longrightarrow N \longrightarrow OC_8H_{17}$

PhP1

Modulation of Polarization: Ambidextrous Thioindigo

Optical Switching of SSFLC

Optical Switching of SSFLC

A) Polarization Modulation

B) Polarization Inversion

Photomechanical Effect

Ikeda, T.; Sasaki, T.; Ichimura, K. Nature 1993, 361, 428

Transverse Dipole Modulation

Thioindigo Photochromism

 10^{-4} M solution in C₆H₆

 $X = NO_2$

P_{S} Photomodulation

PhB; Cr 35 SmC 70 SmA 72 N 75 I

Dinescu, L.; Maly, K. E.; Lemieux, R. P. J. Mater. Chem. 1999, 9, 1679

Photoinversion of $P_{\rm S}$

1.3 mol%

3 mol%

PhB; Cr 35 SmC 70 SmA 72 N 75 I

Dinescu, L.; Lemieux, R. P. Adv. Mater. 1999, 11, 42

"Ambidextrous" Thioindigo Dopant

Vlahakis, J. Z.; Wand, M. D.; Lemieux, R. P. Adv. Funct. Mater. 2004, 14, 637

Synthesis

$P_{\rm S}$ Photoinversion

PhB; Cr 35 SmC 70 SmA 72 N 75 I

Ambidextrous Photoswitch

1 mol% in MX6120 @ 50 °C

time (sec)

Acknowledgments

Graduate Students

C. Boulton Dr. L. Dinescu J. Finden W. Gang B. Halden Dr. S. Hartley S. Lai Dr. C. Lazar L. Li Dr. K. E. Maly M. Moran Dr. A. McCubbin Dr. S. Swansburg M. Thompson Dr. D. Vizitiu Dr. J. Vlahakis Prof. V. Williams E. Yuh N. Xiao

Postdocs Prof. T. Hegmann Dr. S. Mullick Dr. J. Roberts Dr. K. Yang Dr. P. Zhang

Collaborators

Dr. M. Glaser (UC-Boulder) Dr. M. D. Wand (Displaytech)
Funding

Natural Sciences and Engineering Research Council of Canada

ACS Petroleum Research Fund

QuickTime™ and a Photo - JPEG decompressor are needed to see this picture.

Canada Foundation for Innovation

Ontario Challenge Fund

