(UCSB, CA) 2006.8.23

Visible-light-driven Powdered Photocatalysts for Water Splitting (Tokyo University of Science, CREST/JST) Akihiko KUDO

Water splitting H_2 production

Anti-stain

Self cleaning

Target of our project

Development of new photocatalyst materials

To make a library of photocatalyst materials ↓ To achieve artificial photosynthesis (Solar H₂ production)

Topics

- 1. Development of highly active tantalate photocatalysts for overall water splitting (UV)
- 2. Development of visible-light-driven photocatalysts by band engineering (Sacrificial systems)
- 3. Construction of Z-schemes for overall water splitting under VIS light irradiation
- Development of highly active metal sulfide photocatalysts for solar hydrogen production (Sacrificial systems)

Photocatalytic water splitting - Ideal H₂ production, Artificial photosynthesis -

H₂ H₂ H₂ H₂ H₂O H₂O

Energy output For fuel cell, hydrogen engine --

Simple system! Advantage to large scale system

An ultimate chemical reaction for solving energy and environmental issues

History of development of photocatalysts for water splitting 1970's-1980's (Honda-Fujishima effect, focused on TiO₂) TiO₂, SrTiO₃, CdS, ZnS 1980's-1990's (Finding of new materials) Nb,Ta,Zr oxides Layered compounds 1990's-2000's (Achievement of highly efficient water splitting, Finding of various materials) Ta mixed oxides, d^{10} metal oxides, various oxides, metal sulfides solid solutions, oxynitrides, oxysulfides Recent progress (Water splitting under VIS) Pt/SrTiO₃:Cr,Ta-WO₃ (Sayama), Pt/TaON-WO₃ (Abe) Ru/SrTiO₃:Rh-BiVO₄ (Kudo), Cr-Rh/GaN:ZnO (Domen, Inoue)

Photocatalyst library of Kudo's group

UV-responsive	VIS-responsive photocatalysts			
photocatalysts				
Overall water	Overall water	H_2 evolution	O_2 evolution	
splitting	splitting	(Sacrificial)	(Sacrificial)	
ANb2O6	SrTiO3:Rh-BiVO4	ZnS:Cu	BiVO ₄	
Sr2Nb2O7	SrTiO3:Rh-Bi2MoO6	ZnS:Ni	Bi2MoO6	
Cs2Nb4O11	SrTiO3:Rh-WO3	ZnS: Pb,Cl	Bi2WO6	
Ba5Nb4O15		NaInS ₂	AgNbO ₃	
ATaO₃		AgGaS ²	Ag ₃ VO ₄	
NaTaO₃:La		CulnS2- AgInS2-ZnS	TiO2:Cr,Sb	
ATa2O6		SrTiO₃:Cr,Sb	TiO2:Ni,Nb	
K3Ta3Si2O13		SrTiO₃:Cr,Ta	TiO2:Rh	
K3Ta3B2O12		SrTiO3:Rh	PbMoO4:Cr	
K2LnTa5O15		SnNb2O6	SnNb2O6	
AgTaO₃				

Mechanism of semiconductor photocatalysts (I) - band engineering-

Band structure \implies **Thermodynamic requirement**

H₂ or O₂ evolution reaction in the presence of sacrificial reagents - Half reactions for water splitting -

Factors → Band level, reaction site, recombination

Sampling port to GC

Gas circulation pump

300W Xe lamp

Reactor

Topic 1 Highly active tantalate photocatalysts for water splitting (UV)

Photocatalyst	Band gap	NiO loaded	Activity / µmol/h	
	/ eV	/ mass%	H ₂	02
K3Ta3Si2O13	4.1	None	53	23
K3Ta3Si2O13	4.1	1.3	390	200
LiTaO ₃	4.7	None	430	220
LiTaO ₃	4.7	0.10	98	52
NaTaO ₃	4.0	None	160	86
NaTaO ₃	4.0	0.05	2180	1100
KTaO ₃	3.6	None	29	13
KTaO ₃	3.6	0.10	7.4	2.9
CaTa ₂ O ₆	4.0	None	21	8.3
CaTa ₂ O ₆	4.0	0.10	72	32
SrTa ₂ O ₆	4.4	None	140	66
SrTa ₂ O ₆	4.4	0.10	960	490
BaTa ₂ O ₆	4.1	None	33	15
BaTa ₂ O ₆	4.1	0.30	629	303
Sr2Ta2O7	4.6	None	57	18
Sr2Ta2O7	4.6	0.15	1000	480
K2PrTa5O15	3.8	None	10	3
K2PrTa5O15	3.8	0.1	1550	830

Water splitting over tantalate photocatalysts under UV irradiation

Cat.: 1.0 g, H₂O: 390 ml, Inner irradiation quartz cell, 400 W Hg lamp

Water splitting over NiO(0.2wt%)/NaTaO₃ :La1.5% photocatalyst

Catalyst:1g, 1mM NaOH:390mL, inner irradiation quartz cell, 400W high-pressure Hg lamp

Band Gap: 4.1 eV

Kato, Asakura, Kudo, J. Am. Chem. Soc., 125, 3082 (2003).

Photocatalytic water splitting on NiO/NaTaO₃:La

BG:4.1eV QY:56% (270nm)

Responsive to 300nm

QuickTimeý Dz ÉÇÅ[ÉVÉáÉì JPEG OpenDML êLí£ÉvÉçÉOÉâÉÄ ǙDZÇAÉsÉNÉ`ÉÉǾå©ÇÈǞǽÇ…ÇÕïKóvÇ-ÇÅE

Photocatalyst Powdered Layer

Highly efficient water splitting using a powdered photocatalyst is actually possible.

Topic 2Band engineering for design of
visible-light-driven photocatalysts

A. Kudo, H. Kato, and I. Tsuji, *Chem. Lett.*, **33**, 1534 (2004).

 TiO_2 , $SrTiO_3$ Dopant \longrightarrow recombination center

Activities of doped photocatalysts using VIS (Sacrificial systems)

Host	Dopant	EG / eV	hv	Activity / μmol h⁻¹	
	(ca. 1%)		/ nm	$H_2^{a)}$	O2 ^{b)}
SrTiO ₃	Cr/Sb	2.4	>420	78	0.9
	Cr/Ta	2.3	>440	70	0
	Ni/Ta	2.8	>420	2.4	0.5
	Rh	2.3	>440	117	0
TiO ₂ (rutile)	Cr/Sb	2.2	>420	0	32
	Cr	-	>420	-	0
	Rh/Sb	2.2	>440	0	22
	Rh	-	>440	-	0
	Ni/Nb	2.6	>440	0	13
WO ₃	-	2.8	>420	-	48

Catalyst: 0.3g, Light source: 300W Xe lamp + cut off filters

^{a)} 10vol%CH₃OHaq 150mL, ^{b)} O₂ 0.05mol/L AgNO₃aq 150mL

Codoping

charge compensation, suppression of mixed valency

Diffuse reflectance spectra of VB-controlled photocatalysts

Activities of photocatalysts valence-band-controlled with Ag4d, Bi6s, Sn5s under visible light irradiation ($\lambda > 420$ nm)

Photocatalyst	BG / eV	Sacrificial reagent	Activity / µmol/h	
			$H_2^{a)}$	O ₂ ^{b)}
AgNbO ₃	2.86	AgNO ₃		37
Ag_3VO_4	2.0	AgNO ₃		17
BiVO ₄	2.4	AgNO ₃		200
Pt/SnNb ₂ O ₆	2.3	CH ₃ OH	14	
SnNb ₂ O ₆	2.3	AgNO ₃		5
WO ₃	2.8	AgNO ₃		48

Catalyst: 0.3g, Light source: 300W Xe lamp

^{a)} H₂ evolution reaction: 10vol%CH₃OHaq 150mL (cocatalyst: Pt)

^{b)}O₂ evolution reaction: 0.05mol/L AgNO₃aq 150mL

Ambient temperature and pressure in aqueous media → Environmentally friendly process

A. Kudo, K. Omori, and H. Kato, *J. Am. Chem. Soc.*, **121**, 11459 (1999). S. Tokunaga, H. Kato, and A. Kudo, *Chem. Mater.*, **13**, 4624 (2001).

Band structure of BiVO4 photocatalyst

Topic 3 Water splitting using visible light - Two photon process (Z-scheme) -

H. Kato, A. Kudo, et. al., Chem. Lett., 33, 1348 (2004).

Z-scheme photocatalyst system using nano-oxides for solar hydrogen production

450nm Øk X40 ØK

Water splitting by (Ru/SrTiO₃:Rh)-(WO₃) and (Pt/SrTiO₃:Rh)-(WO₃) systems under VIS irradiation

Action spectrum of (Ru/SrTiO₃:Rh)-(BiVO₄)-FeCl₃ system for water splitting

Absorbance / arb. units

Solar hydrogen production from water by (Ru/SrTiO₃:Rh_HT)-(BiVO₄)-FeCl₃ system

Topic 4 Highly active metal sulfide photocatalysts for solar H₂

Band engineering by making a solid solution

I. Tsuji, A. Kudo, et al., J. Am. Chem. Soc., 126, 13406 (2004).

Photocatalytic H₂ evolution from an aqueous K $_2$ SO₃ and Na₂S solution over AgInZn₇S₉ powder heat-treated at 1123 K under visible light irradiation

Pt 3wt%

Pt 1wt%

H₂ evolution on Ru/(CuAg)_{0.25}In_{0.5}Zn_{1.0}S₂ photocatalyst

I. Tsuji, H. Kato, and A. Kudo, Angew. Chem., Int. Ed., 44, 3565 (2005), Chem. Mater., 18, 1969 (2006).

2 . Visible-light-driven photocatalysts developed by band engineering

A. Kudo, H. Kato, and I. Tsuji, Chem. Lett., 33, 1534 (2004).