Atomistic Simulations of Hydrogen Storage in Metal Hydrides and Nanoporous Sorbents

J. Karl Johnson^{1,3}, Sudhakar V. Alapati², Bing Dai¹, Jinchen Liu¹, David S. Sholl^{2,3} ¹University of Pittsburgh, ²Carnegie Mellon University, ³National Energy Technology Laboratory

Outline

Metal Organic Frameworks

- Simulation methods for H₂ adsorption in MOFs
- Validation and predictions for existing MOFs
- \square Where and how H₂ adsorbs in MOFs—volume density of states

Metal Hydrides

- Thermodynamics of destabilized metal hydrides
- Calculation methods
- Reaction enthalpies: Test systems and predictions
- □ Entropic contributions & van't Hoff plots
- \square Kinetic issues: Dissociation of H₂ on Mg₂Si

Why study H₂ adsorption in MOFs?

- Metal organic frameworks have been found to be very good adsorbents for methane.
 - Snurr and collaborators have found that computer simulation results for methane compare very well with experiments, and predicted the structure of a new material with a very large methane adsorption.
- Experiments of H₂ adsorption on MOFs at 77 K (Rosi et al., Rowsell et al.) and 298 K (Rosi et al.) indicate that these materials are promising candidates for meeting the DOE targets.

Metal Organic Frameworks

- Metal-oxide vertices held together with organic linkers
- Easy to synthesize
- Stable under a wide range of temperature and pressures
- Large effective surface area (many sites for adsorption)
- Comparatively light
- Can be tailored by changing metal groups, ligands, & organic linkers

Structure of IRMOF-14

Modeling Hydrogen Adsorption in MOFs

- Structure of the MOFs: rigid framework obtained by XRD experiments
- Solid-fluid potential: standard UFF force field
- Fluid-fluid potential: Buch potential: Spherical, ε = 34.7 K, σ = 2.96 Å
- Computational technique: grand canonical Monte Carlo
 - Quantum diffraction effects at 77 K treated by path integral Monte Carlo and the Feynman Hibbs effective potential approximation.

Adsorption Isotherms for H₂ on IRMOF-1 at 77K: Comparison with Experiments

Adsorption Isotherms for H₂ on IRMOF-1 at 77K: Comparison with Experiments

H₂ Adsorption in IRMOF-1 at 298 K

- Experimental data by Rosi et al. (O. Yaghi's group) published in Science, **300**, 1127 (2003)
- Simulation data are predictions, no adjustable parameters
- Experimental data of Ahn et al., JPCB, **110**, 1099 (2006).

Prediction: Excess Adsorption at 77K

Prediction: Excess Adsorption at 298K

Volumetric Density of States

What are the Properties of Ideal Adsorbents?

• $\Delta G = \Delta H - T \Delta S < 0.$

- Estimate of ΔS: an ideal gas at 100 bar minus one degree of freedom at 298 K: -TΔS ~1600 K (13 kJ/mol).
- One would need high volumetric density of states available in the PES at an energy U = ΔH ~ TΔS to have large adsorption.
- MOF 2 and 3 have sites at almost the right energy, but low volume density of states.
- IRMOFs have a high volume density of states, but for energies that are too weak.

Conclusions—MOFs

- The computer simulations are in fairly good agreement with many experiments on MOFs.
- Problems with experiments have been identified by comparison with simulation data.
- The MOFs we have tested do not meet the DOE requirements at 298K.
 - The volume available for adsorption is large enough.The energy of the adsorption sites is too weak.
- Computer simulations will be useful to estimate the adsorption properties of MOFs yet to be synthesized.
- Stronger adsorption are needed, e.g., unsaturated metals, spillover.

Why Metal Hydrides?

- Metal hydrides can have very high volumetric densities, much higher than liquid H₂.
- Hydrides of period 2 and 3 metals can also have very high gravimetric densities.

So Why Not Metal Hydrides?

- Temperatures required for dehydrogenationReversibility
- Heat management

Thermodynamics of H₂ Storage in Metal Hydrides

Zuttel, Mater. Today 6 (2003) 24; Grochala & Edwards, Chem. Rev. 104 (2004) 1283

A useful way to characterize a metal hydride is the temperature at which the material is in equilibrium with 1 bar H₂: $\Delta G = 0$, so $\Delta H = T \Delta S$

For a large number of simple metal hydrides, $\Delta S \sim 130 \text{ J K}^{-1} \text{ mol}^{-1}$

For some complex metal hydrides (e.g. LiBH₄), Δ S ~ 100 J K⁻¹ mol⁻¹

Thermodynamics of H₂ Storage in Metal Hydrides

Direct decomposition: $MH_x \rightarrow M + (x/2) H_2$

Some metal hydrides satisfy density requirements but not thermodynamic requirements

Destabilization of Metal Hydrides

Original concept introduced by Reilly & Wiswall for Ni hydrides. (Reilly & Wiswall Inorg. Chem., **6**, (1967) 2220)

Recent application of this concept to light metal hydrides by Vajo et al. (J. J. Vajo et al., J. Phys. Chem. B **109** (2005) 3719; **108** (2004) 13977).

Direct reaction: $MgH_2 \rightarrow Mg + H_2$ ($\Delta H = 64 \text{ kJ/mol } H_2$; 7.7 wt.% H)

Destabilized reaction:

 $2 \text{ MgH}_2 + \text{Si} \rightarrow \text{Mg}_2\text{Si} + 2 \text{ H}_2 (\Delta \text{H} = 37 \text{ kJ/mol H}_2; 5.0 \text{ wt.}\% \text{ H})$

Destabilization of LiBH₄

(J. J. Vajo et al., J. Phys. Chem. B **109** (2005) 3719; **108** (2004) 13977)

Direct reaction: $LiBH_4 \rightarrow LiH + B + 3/2 H_2$ ($\Delta H = 82 \text{ kJ/mol } H_2$; 13.91 wt.% H)

Destabilized reaction: 2 LiBH₄ + MgH₂ \rightarrow MgB₂ + 2LiH + 4 H₂ (Δ H = 67 kJ/mol H₂; 11.56 wt.% H)

Practical Limitations of Destabilized Metal Hydrides

Rapid kinetics are required both for H₂ production and hydrogenation

However, *strong* kinetic limitations are observed for hydrogenation in both destabilized systems:

 $Mg_2Si + H_2 \rightarrow 2 MgH_2 + Si$ not observed even under extreme conditions

2 LiBH₄ + MgH₂ → MgB₂ + 2 LiH + 4 H₂ gives ~9 wt.% reversible storage, but only at T > 250 °C (with Ti used as catalyst with ball-milled materials)

(J. J. Vajo et al., J. Phys. Chem. B **109** (2005) 3719; **108** (2004) 13977)

Challenges

Identify other destabilization schemes with favorable thermodynamics

Many schemes can be considered, but thermodynamic data are unavailable for most compounds of interest.

Goals of our work:

- Identify reaction schemes yielding > 7 wt.% H₂ with 30 < Δ H < 60 kJ/mol H₂
- Understand origin of kinetic limitations, specifically for Mg_2Si+H_2

Screening Destabilization Schemes With DFT

Plane wave Density Functional Theory (DFT) is well suited to treating hydrogen interactions with metals

Examples:

H solubility and diffusion through CuPd alloys (Kamakoti et al., Science 307 (2005) 569)

H diffusion in ordered intermetallics (Bhatia et al., J. Phys. Cond. Matt. 16 (2004) 8891)

H solubility in Al (Wolverton et al., Phys. Rev. B 69 (2004) 144109)

Our calculations:

- Vienna *ab initio* Simulation package (VASP)
- GGA functional with PAW approach (USPP gives similar results)
- Convergence reached with energy cutoff and *k*-space sampling
- All solid state structures fully optimized within experimental space group

What is Density Functional Theory?

Molecular orbital method is "an approximate solution to an exact equation"

 $H\Psi = E\Psi; \quad E = E[\Psi]$

-Many-body problem is impossible to solve exactly

DFT is "an exact solution to an approximate equation"

$$E = T_{s}[n] + U[n] + V[n] + E_{xc}[n]; \quad E = E[n(r)]$$

-Exact form of E_{xc} is unknown

First-Pass Estimation of ΔH : Limitations

- Accuracy of DFT
- Approximate $\Delta H \approx \Delta E$
- All calculations at T = 0 K
- Heat capacities needed for finite T
- No zero point energy corrections
- Phonon density of states needed to compute free energies & equilibrium pressures

Accuracy of DFT-based Values of ΔH

(Wolverton et al., Phys. Rev. B 69 (2004) 144109)

Experimental data available for many high Z metal hydrides (e.g. Sc, Pd, Ni, etc.)

RMS deviation in DFT results is 15 kJ/mol H_2 ; this is sufficiently accurate for screening purposes

A DFT-based Database of Reaction Enthalpies

We have optimized the crystal structures of 51 solid materials listed in Wycoff or Pearson comprised of AI, B, Ca, Li, Mg, Si, or H: AI, AI₁₂Mg₁₇, AI₂Ca, AI₂Ca₃Si₂, AI₂CaSi₂, AI₂Li₃, AIB₂, AIH₃, AILi, AILi₃N₂, AILiSi, AIN, Sc, Sc₅Si₃, ScB₂, ScB₁₂, ScH₂, ScN, ScSi, ScSi₂, AI₂Sc, AI₃Sc, AISc₂, Li₃ScN₂, Ca₂LiSi₃, Ca₂N, CaB₆, CaH₂, CaLi₂, CaLiSi₂, CaMg₂, CaSi, Li, Li₁₂Mg₃Si₄, Li₃N, Li₅N₃Si, LiBH₄, LiH, LiN₃, LiNH₂, Mg, Mg₂Si, Mg₃N₂, MgB₂, MgB₄, MgH₂, Si, SiB₆, B

Full crystal structure of $Ca(AIH_4)_2$ is not known experimentally. We used *ab initio* prediction of Løvvik (Phys. Rev. B **71** (2005) 144111)

LiBH₄ transforms from *Pnma* at low T to $P6_3mc$ at 384 K (Soulie et al., J. Alloys Compounds 346 (2002) 200) Results below are for *Pnma* form (giving higher Δ H than $P6_3mc$)

 Li_5N_3Si has very large unit cell with partial atomic occupancies. DFT calculations performed with two materials with compositions $Li_{54}N_{32}Si_{10}$ and $Li_{53}N_{32}Si_{11}$ with Si distributed randomly.

Using this DFT-based database, we have considered >100 reactions that have not previously be evaluated as potential H_2 storage schemes.

Reactions of Interest

Six new promising destabilization schemes identified – all have high densities & promising thermodynamics.

Most schemes (not shown) are less promising for either storage density or thermodynamic reasons (or both).

Promising Reactions

Reaction	wt.% H ₂	ΔH (USPP)	ΔH (PAW)
$3 \operatorname{LiNH}_{2} + 2 \operatorname{LiH} + \operatorname{Si} \rightarrow \operatorname{Li}_{5}\operatorname{N}_{3}\operatorname{Si} + 4 \operatorname{H}_{2}$ (10/11 Si atoms)	7.16	29.8/19.2	34.2/23.3
$4 \operatorname{LiBH}_4 + \operatorname{MgH}_2 \rightarrow 4 \operatorname{LiH} + \operatorname{MgB}_4 + 7 \operatorname{H}_2$	12.46	66.8 (o) 57.5 (h)	69.2 (o) 59.9 (h)
$7 \text{ LiBH}_4 + \text{MgH}_2 \rightarrow 7 \text{ LiH} + \text{MgB}_7 + 11.5 \text{ H}_2$	12.99	69.2-73.1 (o) 59.2-63.1 (h)	71.5-75.5 (o) 61.5-65.5 (h)
$CaH_2 + 6 LiBH_4 \rightarrow CaB_6 + 6 LiH + 10 H_2$	11.69	60.3 (o) 50.4 (h)	62.7 (o) 52.9 (h)
$LiNH_2 + MgH_2 \rightarrow LiMgN + 2 H_2$	8.19	29.7	31.9
$ScH_2 + 2 LiBH_4 \rightarrow ScB_2 + 2 LiH + 4 H_2$	8.91		49.7

DFT calculations gave the T = 0 enthalpy. Is this enough?

Ackland, J. Phys. Condens. Matt., 14 (2002) 2975

Equilibrium pressure for decomposition reaction given by

$$P = P_0 \exp\left(\frac{-\Delta G(T)}{RT}\right).$$

Validation of DFT + Phonon Approach

Calculate Van't Hoff Plots to predict equilibrium pressure for the reaction at any temperature T


```
Enthapy Changes \Delta H(T=0)
```


1. K. Parlinski, Sofware PHONON 2005

Sodium Alanate: $3NaAIH_4 \rightarrow Na_3AIH_6 + 2AI + 3H_2$

Exp: Vajo et al. JPCE 109, 3719 (2005)

Prediction of Vapor Pressures

■ $LiNH_2 + MgH_2 \rightarrow LiMgN + 2H_2$ Pressure probably too high • $4\text{LiBH}_4 + \text{MgH}_2 \rightarrow 4\text{LiH} + \text{MgB}_4 + 7\text{H}_2$ Pressure probably too low • $7\text{LiBH}_4 + \text{MgH}_2 \rightarrow 7\text{LiH} + \text{MgB}_4 + 11.5\text{H}_2$ Pressure probably too low • $6LiBH_4 + CaH_2 \rightarrow CaB_6 + 6LiH + 10H_2$ Pressure probably too low • $ScH_2 + 2 LiBH_4 \rightarrow ScB_2 + 2 LiH + 4 H_2$ Just about right! ~1 bar @ 50 °C

Experiments on these materials are needed!

Kinetics of Reversibility: Mg₂Si + 2H₂ \rightarrow 2MgH₂ + Si

Strong kinetic limitations observed in destabilized reactions studied to date:

```
Mg_2Si + H_2 \rightarrow 2

MgH_2 + Si not

observed—even

under extreme

conditions
```


H₂ Dissociation on Mg₂Si Surfaces

One possible kinetic barrier to Mg₂Si + H₂ → MgH₂ + Si is the dissociation of H₂ on surfaces of Mg₂Si Large barriers to H₂ dissociation are known to exist on Mg(0001) (T. Vegge, Phys. Rev. B 70 (2004) 035412)

This hypothesis can be disproved if facile pathways for H₂ dissociation are identified

Our strategy is to compute the most favorable binding sites for H-atoms and H₂ on Mg₂Si($\overline{110}$) and then to find possible dissociation pathways using the *Nudged Elastic Band method** within VASP. The Mg₂Si($\overline{110}$) surface is very likely to be present in equilibrium Mg₂Si crystals. It is lower in surface energy than other low index surfaces.

*H. Jónsson et al. Surf. Sci. 324, 305 (1995)

H₂ Dissociation on Mg₂Si

H₂ dissociation rates can be estimated using Transition State Theory (T. Vegge, Phys. Rev. B 70 (2004) 035412)

> TST dissociation rate/surface site at $P_{H2} = 1$ bar: T = 20 °C \rightarrow rate is > 1 s⁻¹ T = 300 °C \rightarrow rate is > 1000 s⁻¹

 H_2 dissociation appears to be facile on $Mg_2Si(\overline{1}10)$ so H_2 dissociation is not the rate limiting step in Mg_2Si hydrogenation

Many other atomic-scale processes must still be considered before a complete description of the overall hydrogenation reaction is available

- Oxide overlayer formation?
- Formation of MgH₂ from the hydrogenated surface?
- Segregation of MgH₂ and Si?

Oxide Formation on the Mg₂Si Surface: 2/3 Monolayer Coverage

Images

Energy barrier to H₂ dissociation is 92 kJ/mol (80 kJ/mol after zero point energy corrections)

Energetics of Oxide Formation On Mg₂Si

What is the Extent of Oxide Formation?

Energy barrier to H₂ dissociation on the 7/4 ML oxide surface is 195 kJ/mol

Conclusions—Metal Hydrides

- Destabilized metal hydrides are perhaps the most promising known materials for achieving high density reversible storage of H₂
- Our DFT-based database has allowed several hundred additional reactions to be screened based on reaction enthalpy.
- Six promising examples have been identified, plus a larger number of metastable reaction schemes.
- Entropic terms may be included through calculating the phonon density of states.
- Calculated van't Hoff plots are in reasonable agreement with experiments

Conclusions—Metal Hydrides

- Facile dissociation of H₂ should be observed on the clean Mg₂Si surface.
- Surface oxide formation is very exothermic.
- Surface oxides inhibit adsorption and dissociation of H₂ on Mg₂Si.
- Calculations are in accord with experiments indicating that ball milling under a hydrogen atmosphere is required to hydrogenate Mg₂Si. (Janot et al., Intermetallics, 14, 163 2006)

Acknowledgments

- J. J. Vajo
- G. Olson
- F. E. Pinkerton
- R. C. Bowman
- B. Clemens
- DOE DE-FC36-05G015066
- DOE Metal Hydride Center of Excellence.

