Atomistic Simulations of Hydrogen Storage in Metal Hydrides and Nanoporous Sorbents

J. Karl Johnson1,3, Sudhakar V. Alapati2, Bing Dai1, Jinchen Liu1, David S. Sholl2,3

1University of Pittsburgh,
2Carnegie Mellon University,
3National Energy Technology Laboratory
Outline

- **Metal Organic Frameworks**
 - Simulation methods for H_2 adsorption in MOFs
 - Validation and predictions for existing MOFs
 - Where and how H_2 adsorbs in MOFs—volume density of states

- **Metal Hydrides**
 - Thermodynamics of destabilized metal hydrides
 - Calculation methods
 - Reaction enthalpies: Test systems and predictions
 - Entropic contributions & van’t Hoff plots
 - Kinetic issues: Dissociation of H_2 on Mg_2Si
Why study H_2 adsorption in MOFs?

- Metal organic frameworks have been found to be very good adsorbents for methane.
 - Snurr and collaborators have found that computer simulation results for methane compare very well with experiments, and predicted the structure of a new material with a very large methane adsorption.

- Experiments of H_2 adsorption on MOFs at 77 K (Rosi et al., Rowsell et al.) and 298 K (Rosi et al.) indicate that these materials are promising candidates for meeting the DOE targets.
Metal Organic Frameworks

- Metal-oxide vertices held together with organic linkers
- Easy to synthesize
- Stable under a wide range of temperature and pressures
- Large effective surface area (many sites for adsorption)
- Comparatively light
- Can be tailored by changing metal groups, ligands, & organic linkers

Structure of IRMOF-14
Modeling Hydrogen Adsorption in MOFs

- Structure of the MOFs: rigid framework obtained by XRD experiments
- Solid-fluid potential: standard UFF force field
- Fluid-fluid potential: Buch potential: Spherical, $\varepsilon = 34.7$ K, $\sigma = 2.96$ Å
- Computational technique: grand canonical Monte Carlo
 - Quantum diffraction effects at 77 K treated by path integral Monte Carlo and the Feynman Hibbs effective potential approximation.
Adsorption Isotherms for H₂ on IRMOF-1 at 77K: Comparison with Experiments

(b)

- Simulations: Buch potential
- Simulations: FH Effective Buch Potential
- Wong-Foy et al., JACS, 128, 3494 (2006)
- Ahn group, JPCB, 110, 1099 (2006)
- Rowsell et al. JACS, 126, 5666 (2004)
Adsorption Isotherms for H₂ on IRMOF-1 at 77K: Comparison with Experiments
H$_2$ Adsorption in IRMOF-1 at 298 K

- Experimental data by Rosi et al. (O. Yaghi’s group) published in Science, 300, 1127 (2003)
- Simulation data are predictions, no adjustable parameters
Prediction: Excess Adsorption at 77K
Prediction: Excess Adsorption at 298K
Volumetric Density of States
What are the Properties of Ideal Adsorbents?

- $\Delta G = \Delta H - T\Delta S < 0$.
- Estimate of ΔS: an ideal gas at 100 bar minus one degree of freedom at 298 K: $-T\Delta S \approx 1600$ K (13 kJ/mol).
- One would need high volumetric density of states available in the PES at an energy $U = \Delta H \sim T\Delta S$ to have large adsorption.
- MOF 2 and 3 have sites at almost the right energy, but low volume density of states.
- IRMOFs have a high volume density of states, but for energies that are too weak.
Conclusions—MOFs

- The computer simulations are in fairly good agreement with many experiments on MOFs.
- Problems with experiments have been identified by comparison with simulation data.
- The MOFs we have tested do not meet the DOE requirements at 298K.
 - The volume available for adsorption is large enough.
 - The energy of the adsorption sites is too weak.
- Computer simulations will be useful to estimate the adsorption properties of MOFs yet to be synthesized.
- Stronger adsorption are needed, e.g., unsaturated metals, spillover.
Why Metal Hydrides?

- Metal hydrides can have very high volumetric densities, much higher than liquid H\(_2\).
- Hydrides of period 2 and 3 metals can also have very high gravimetric densities.
So Why Not Metal Hydrides?

- Temperatures required for dehydrogenation
- Reversibility
- Heat management
A useful way to characterize a metal hydride is the temperature at which the material is in equilibrium with 1 bar H₂:

\[\Delta G = 0 \text{, so } \Delta H = T \Delta S \]

For a large number of simple metal hydrides, \(\Delta S \sim 130 \text{ J K}^{-1} \text{ mol}^{-1} \)

For some complex metal hydrides (e.g. LiBH₄), \(\Delta S \sim 100 \text{ J K}^{-1} \text{ mol}^{-1} \)

\[100 < \Delta S < 130 \text{ J K}^{-1} \text{ mol}^{-1} \quad 25 < T < 150 \text{ °C} \]

\[30 < \Delta H < 60 \text{ kJ/mol H}_2 \]
Thermodynamics of H₂ Storage in Metal Hydrides

Direct decomposition: MHₓ → M + (x/2) H₂

Some metal hydrides satisfy density requirements but not thermodynamic requirements.
Destabilization of Metal Hydrides

Direct reaction: \[\text{MgH}_2 \rightarrow \text{Mg} + \text{H}_2 \] \((\Delta H = 64 \text{ kJ/mol H}_2; 7.7 \text{ wt.} \% \text{ H}) \)

Destabilized reaction:
\[2 \text{MgH}_2 + \text{Si} \rightarrow \text{Mg}_2\text{Si} + 2 \text{H}_2 \] \((\Delta H = 37 \text{ kJ/mol H}_2; 5.0 \text{ wt.} \% \text{ H}) \)

\[\text{direct} \quad \Delta H \quad \text{destabilized} \]

\[\text{Mg}_2\text{Si} + 2 \text{H}_2 \]

\[2 \text{Mg} + 2 \text{H}_2 + \text{Si} \]

\[2 \text{MgH}_2 + \text{Si} \]
Destabilization of LiBH$_4$

Direct reaction: LiBH$_4$ \rightarrow LiH + B + 3/2 H$_2$ ($\Delta H = 82$ kJ/mol H$_2$; 13.91 wt.% H)

Destabilized reaction:
2 LiBH$_4$ + MgH$_2$ \rightarrow MgB$_2$ + 2LiH + 4 H$_2$ ($\Delta H = 67$ kJ/mol H$_2$; 11.56 wt.% H)
Practical Limitations of Destabilized Metal Hydrides

Rapid kinetics are required both for H₂ production and hydrogenation.

However, strong kinetic limitations are observed for hydrogenation in both destabilized systems:

\[
\text{Mg}_2\text{Si} + \text{H}_2 \rightarrow 2 \text{MgH}_2 + \text{Si}
\]
not observed even under extreme conditions

\[
2 \text{LiBH}_4 + \text{MgH}_2 \rightarrow \text{MgB}_2 + 2 \text{LiH} + 4 \text{H}_2
\]
gives ~9 wt.% reversible storage, but only at \(T > 250 \, ^\circ C\) (with Ti used as catalyst with ball-milled materials)

Many schemes can be considered, but thermodynamic data are unavailable for most compounds of interest.

Goals of our work:
- Identify reaction schemes yielding > 7 wt.% H₂ with 30 < ΔH < 60 kJ/mol H₂
- Understand origin of kinetic limitations, specifically for Mg₂Si+H₂

Challenges

Identify other destabilization schemes with favorable thermodynamics
Plane wave Density Functional Theory (DFT) is well suited to treating hydrogen interactions with metals

Examples:
H solubility and diffusion through CuPd alloys (Kamakoti et al., Science 307 (2005) 569)

Our calculations:
- Vienna *ab initio* Simulation package (VASP)
- GGA functional with PAW approach (USPP gives similar results)
- Convergence reached with energy cutoff and *k*-space sampling
- All solid state structures fully optimized within experimental space group
What is Density Functional Theory?

Molecular orbital method is “an approximate solution to an exact equation”

\[H\Psi = E\Psi; \quad E = E[\Psi] \]

- Many-body problem is impossible to solve exactly

DFT is “an exact solution to an approximate equation”

\[E = T_s[n] + U[n] + V[n] + E_{xc}[n]; \quad E = E[n(r)] \]

- Exact form of \(E_{xc} \) is unknown
First-Pass Estimation of ΔH: Limitations

- Accuracy of DFT
- Approximate $\Delta H \approx \Delta E$
- All calculations at $T = 0$ K
- Heat capacities needed for finite T
- No zero point energy corrections
- Phonon density of states needed to compute free energies & equilibrium pressures
Accuracy of DFT-based Values of ΔH

Experimental data available for many high Z metal hydrides (e.g. Sc, Pd, Ni, etc.)

RMS deviation in DFT results is 15 kJ/mol H_2; this is sufficiently accurate for screening purposes.
A DFT-based Database of Reaction Enthalpies

We have optimized the crystal structures of 51 solid materials listed in Wycoff or Pearson comprised of Al, B, Ca, Li, Mg, Si, or H:

Al, Al_{12}Mg_{17}, Al_{2}Ca, Al_{2}Ca_{3}Si_{2}, Al_{2}CaSi_{2}, Al_{2}Li_{3}, AlB_{2}, AlH_{3}, AlLi, AlLi_{3}N_{2}, AlLiSi, AlN, Sc, Sc_{5}Si_{3}, ScB_{2}, ScB_{12}, ScH_{2}, ScN, ScSi, ScSi_{2}, Al_{2}Sc, Al_{3}Sc, AlSc_{2}, Li_{3}ScN_{2}, Ca_{2}LiSi_{3}, Ca_{2}N, CaB_{6}, CaH_{2}, CaLi_{2}, CaLiSi_{2}, CaMg_{2}, CaSi, Li, Li_{12}Mg_{3}Si_{4}, Li_{3}N, Li_{5}N_{3}Si, LiBH_{4}, LiH, LiN_{3}, LiNH_{2}, Mg, Mg_{2}Si, Mg_{3}N_{2}, MgB_{2}, MgB_{4}, MgH_{2}, Si, SiB_{6}, B

Full crystal structure of Ca(AlH_{4})_{2} is not known experimentally.

We used ab initio prediction of Løvvik (Phys. Rev. B 71 (2005) 144111)

LiBH_{4} transforms from Pnma at low T to P6_{3}mc at 384 K

(Soulie et al., J. Alloys Compounds 346 (2002) 200)

Results below are for Pnma form (giving higher ΔH than P6_{3}mc)

Li_{5}N_{3}Si has very large unit cell with partial atomic occupancies.
DFT calculations performed with two materials with compositions Li_{54}N_{32}Si_{10} and Li_{53}N_{32}Si_{11} with Si distributed randomly.

Using this DFT-based database, we have considered >100 reactions that have not previously be evaluated as potential H_{2} storage schemes.
Six new promising destabilization schemes identified – all have high densities & promising thermodynamics. Most schemes (not shown) are less promising for either storage density or thermodynamic reasons (or both).
Promising Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>wt.% H₂</th>
<th>ΔH (USPP)</th>
<th>ΔH (PAW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 LiNH₂ + 2 LiH + Si → Li₅N₃Si + 4 H₂ (10/11 Si atoms)</td>
<td>7.16</td>
<td>29.8/19.2</td>
<td>34.2/23.3</td>
</tr>
<tr>
<td>4 LiBH₄ + MgH₂ → 4 LiH + MgB₄ + 7 H₂</td>
<td>12.46</td>
<td>66.8 (o) 57.5 (h)</td>
<td>69.2 (o) 59.9 (h)</td>
</tr>
<tr>
<td>7 LiBH₄ + MgH₂ → 7 LiH + MgB₇ + 11.5 H₂</td>
<td>12.99</td>
<td>69.2-73.1 (o) 59.2-63.1 (h)</td>
<td>71.5-75.5 (o) 61.5-65.5 (h)</td>
</tr>
<tr>
<td>CaH₂ + 6 LiBH₄ → CaB₆ + 6 LiH + 10 H₂</td>
<td>11.69</td>
<td>60.3 (o) 50.4 (h)</td>
<td>62.7 (o) 52.9 (h)</td>
</tr>
<tr>
<td>LiNH₂ + MgH₂ → LiMgN + 2 H₂</td>
<td>8.19</td>
<td>29.7</td>
<td>31.9</td>
</tr>
<tr>
<td>ScH₂ + 2 LiBH₄ → ScB₂ + 2 LiH + 4 H₂</td>
<td>8.91</td>
<td>--</td>
<td>49.7</td>
</tr>
</tbody>
</table>
DFT calculations gave the $T = 0$ enthalpy. Is this enough?

\[G \approx U_0 + U_{ZP} + U_{vib}^{'}(T) - TS_{vib}(T) + PV \]

DFT total energy

harmonic approximation using PHONON code (Parlinski)

Equilibrium pressure for decomposition reaction given by

\[P = P_0 \exp\left(-\frac{\Delta G(T)}{RT}\right). \]
Validation of DFT + Phonon Approach

Calculate Van’t Hoff Plots to predict equilibrium pressure for the reaction at any temperature T

\[\Delta H(T=0) \]

PHONON code\(^1\) direct lattice method

C_v and Entropy S → Changes in Gibbs Free Energy ΔG

1. K. Parlinski, Sofware PHONON 2005
Sodium Alanate: $3\text{NaAlH}_4 \rightarrow \text{Na}_3\text{AlH}_6 + 2\text{Al} + 3\text{H}_2$

2 LiBH₄ + MgH₂ → MgB₂ + 2 LiH + 4 H₂

2 LiBH₄ + MgH₂ → MgB₂ + 2 LiH + 4 H₂

Exp: Vajo et al. JPCB 109, 3719 (2005)
\[2\text{MgH}_2 + \text{Si} \rightarrow \text{Mg}_2\text{Si} + 2\text{H}_2\]
LiNH$_2$ + MgH$_2$ → LiMgN + 2H$_2$

ΔG_{DFT} $\Delta G_{\text{DFT}} + 10$ kJ/mol H$_2$

$\Delta G_{\text{DFT}} - 10$ kJ/mol H$_2$
6LiBH$_4$ + CaH$_2$ \rightarrow CaB$_6$ + 6LiH + 10H$_2$

$T(°C)$

Hexagonal LiBH$_4$

Orthorhombic LiBH$_4$

Pressure (bar)

1000/T (K$^{-1}$)

ΔG_{DFT}

$\Delta G_{DFT} + 10$ kJ/mol H$_2$

$\Delta G_{DFT} - 10$ kJ/mol H$_2$
ScH$_2$ + 2LiBH$_4$ → ScB$_2$ + 2LiH + 4H$_2$
Prediction of Vapor Pressures

- \(\text{LiNH}_2 + \text{MgH}_2 \rightarrow \text{LiMgN} + 2\text{H}_2 \)
 - Pressure probably too high
- \(4\text{LiBH}_4 + \text{MgH}_2 \rightarrow 4\text{LiH} + \text{MgB}_4 + 7\text{H}_2 \)
 - Pressure probably too low
- \(7\text{LiBH}_4 + \text{MgH}_2 \rightarrow 7\text{LiH} + \text{MgB}_4 + 11.5\text{H}_2 \)
 - Pressure probably too low
- \(6\text{LiBH}_4 + \text{CaH}_2 \rightarrow \text{CaB}_6 + 6\text{LiH} + 10\text{H}_2 \)
 - Pressure probably too low
- \(\text{ScH}_2 + 2 \text{LiBH}_4 \rightarrow \text{ScB}_2 + 2 \text{LiH} + 4 \text{H}_2 \)
 - Just about right! ~1 bar @ 50 °C

Experiments on these materials are needed!
Strong kinetic limitations observed in destabilized reactions studied to date:

\[\text{Mg}_2\text{Si} + \text{H}_2 \rightarrow 2\text{MgH}_2 + \text{Si} \]

\[\text{Mg}_2\text{Si} + 2\text{H}_2 \rightarrow 2\text{MgH}_2 + \text{Si} \]

No evidence for hydrogenation
H₂ Dissociation on Mg₂Si Surfaces

One possible kinetic barrier to Mg₂Si + H₂ → MgH₂ + Si is the dissociation of H₂ on surfaces of Mg₂Si
Large barriers to H₂ dissociation are known to exist on Mg(0001)

This hypothesis can be disproved if facile pathways for H₂ dissociation are identified

Our strategy is to compute the most favorable binding sites for H-atoms and H₂ on Mg₂Si(\{\bar{1}10\}) and then to find possible dissociation pathways using the Nudged Elastic Band method* within VASP. The Mg₂Si(\{\bar{1}10\}) surface is very likely to be present in equilibrium Mg₂Si crystals. It is lower in surface energy than other low index surfaces.

H$_2$ Dissociation on Mg$_2$Si($\bar{1}10$)

Energy barrier to H$_2$ dissociation is 45 kJ/mol (39 kJ/mol after ZP corrections)

Dissociation of H$_2$ is facile at room temperature
H₂ Dissociation on Mg₂Si

H₂ dissociation rates can be estimated using Transition State Theory

TST dissociation rate/surface site at P_{H₂} = 1 bar:
- T = 20 °C → rate is > 1 s⁻¹
- T = 300 °C → rate is > 1000 s⁻¹

H₂ dissociation appears to be facile on Mg₂Si(\bar{1}10)
so H₂ dissociation is not the rate limiting step in Mg₂Si hydrogenation

Many other atomic-scale processes must still be considered
before a complete description of the overall hydrogenation
reaction is available
- Oxide overlayer formation?
- Formation of MgH₂ from the hydrogenated surface?
- Segregation of MgH₂ and Si?
Oxide Formation on the Mg$_2$Si Surface: 2/3 Monolayer Coverage

Energy barrier to H$_2$ dissociation is 92 kJ/mol (80 kJ/mol after zero point energy corrections)
Energetics of Oxide Formation On Mg$_2$Si

Adsorption Energy per O (kJ/mol) vs Oxygen Coverage (ML)
What is the Extent of Oxide Formation?

Surface Energy (meV/Å²) vs. O₂ pressure at 300 K (atm)

\[
\gamma = \frac{1}{2A} \left[E^{\text{slab}} - \frac{1}{2} N O E^{\text{O}_2} - N_{\text{Mg}_2\text{Si}} E^{\text{bulk}}_{\text{Mg}_2\text{Si}} - N O \mu_O(p,T) \right]
\]
Energy barrier to H$_2$ dissociation on the 7/4 ML oxide surface is 195 kJ/mol.
Conclusions—Metal Hydrides

- Destabilized metal hydrides are perhaps the most promising known materials for achieving high density reversible storage of H₂.
- Our DFT-based database has allowed several hundred additional reactions to be screened based on reaction enthalpy.
- Six promising examples have been identified, plus a larger number of metastable reaction schemes.
- Entropic terms may be included through calculating the phonon density of states.
- Calculated van’t Hoff plots are in reasonable agreement with experiments.
Conclusions—Metal Hydrides

- Facile dissociation of H_2 should be observed on the clean Mg_2Si surface.
- Surface oxide formation is very exothermic.
- Surface oxides inhibit adsorption and dissociation of H_2 on Mg_2Si.
- Calculations are in accord with experiments indicating that ball milling under a hydrogen atmosphere is required to hydrogenate Mg_2Si. (Janot et al., Intermetallics, 14, 163 2006)
Acknowledgments

- J. J. Vajo
- G. Olson
- F. E. Pinkerton
- R. C. Bowman
- B. Clemens
- DOE DE-FC36-05G015066
- DOE Metal Hydride Center of Excellence.