Materials for Hydrogen Storage: From Nanostructures to Complex Hydrides

Puru Jena

Virginia Commonwealth University, Richmond, VA.

International Symposium on Materials Issues in Hydrogen production and Storage – Santa Barbara August 20-25, 2006

Outline

- Materials Requirement for Hydrogen Storage
 Nanostructured materials:
 Boron Nitride Nano Cage
 Metal Coated Carbon Fullerenes
 Organo-Metallic Frameworks
- Complex light metal hydrides Sodium Alanates

Acknowledgement

Carbon and Boron Nitride Nano Structures: Q. Sun, Q. Wang, VCU **Organo-metallic frameworks** K. Boggavarapu, A. Kandalam > Sodium Alanates: Sa Li, VCU, C. M. Araujo, and R. Ahuja, Univ. of Uppsala Work Supported by the Department of Energy

Hydrogen Storage Requirements

Transportation Applications

- High gravimetric (9 wt %) and volumetric density (70 g/L)
- Fast kinetics
- Favorable thermodynamics
- Effective heat transfer
- Long cycle lifetime for hydrogen absorption/desorption
- Safety, durability, and cost effectiveness

75% of U.S. oil consumption is used to meet transportation energy needs

Hydrogen Storage Media

- Gaseous storage High Pressure
 Energy content = 4.4 MJ/L (at 10,000 psi)
 compared to that of 31.6 MJ/L for fossil fuel.
 Costs associated with compression, leakage and safety are issues of concern.
 - Liquid Storage Cryogenic Temperatures Density of liquid of H₂ at 20 K= 70 g/L Energy content = 8.4 MJ/L

Solid State Storage

Materials Requirements

- For high gravimetric density (9 wt %) host materials must consist of light elements: Li, Be, B, C, N, Na, Mg, Al
- Difficulties: Bonding of hydrogen is strong (covalent or ionic) and thermodynamics and kinetics are not ideal
- Ideal Bonding: not too weak or not too strong
- Ways of altering the chemistry of hydrogen bonding: nanostructuring or catalysis

Atomic and Electronic Structure

Atomic Clusters

Linear combination of atomic orbitals
 Gradient Corrected Density Functional Theory
 Gaussian Basis sets, and Gaussian 98 code
 Geometries optimized without symmetry constraint

Crystals

Supercell Band Structure Methods within Gradient Corrected Density Functional Theory

Boron Nitride Cage

Q. Sun, Q. Wang, and P. Jena, "Storage of molecular hydrogen in B-N cage: Energetics and thermal stability", Nano Letts. **5**, 1273 (2005)

Passage of H_2 into the $B_{36}N_{36}$ cage

How many H₂ can be inserted inside the cage ?

Energy and gap

Changes in bond length

Summary

Boron Nitride Cage can store hydrogen in molecular form, but the energy costs are high and thermodynamically unstable

Boron Nitride Cages are not suitable for hydrogen storage

Nature of Hydrogen Bond

Nature of Hydrogen Bond

Atomic-Chemisorption

Nature of Hydrogen Bond

Lessons from early studies on clusters

> J. Niu, B. K. Rao, and P. Jena, "Binding of hydrogen molecules by a transition-metal ion", Phys. Rev. Letters 68, 2277 (1992) B. K. Rao and P. Jena, "Hydrogen uptake by an alkali metal ion", Europhys. Lett. 20, 307 (1992) ▶ J. Niu, B. K. Rao, P. Jena, and M. Manninen, "Interaction of H₂ and He with metal atoms, clusters, and ions", Phys. Rev. B 51, 4475 (1995) ► G.J. Kubas, Acc. Chem. Res, 21, 120(1988)

TiH₂ and Ti⁺H₂ cluster

Ti₂: r =1.90 (exp. 1.91) $E_B = 3.68eV$ moment =2.0 H₂: r =0.749 (exp. 0.741) $E_B = 4.536 eV$ (exp. 4.533)

 $E_{B} = -1.115 eV$

 $E_{B} = -1.073 eV$

TiH₂

 Ti^+H_2

Ti coated C₆₀

Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc. (Communication) 127, 14582 (2005).

E_ab = 0.55eV/H2 R(Ti-H) = 2.0 R(H-H) = 0.81 Moment = 2.0

1.902eV/Ti M=6.0

2.384eV/Ti M=4.0

2.958eV/Ti M=2.0

3.03eV/Ti M=1.80

EB = 0.55 eV /H2 Moment = 4.0 (+ 0.924eV)

EB = 0.378 eV / H2 Moment = 2.24

(0.0)

5 H₂ molecules on each Ti

H₂ seen to desorb

 $4 H_2$ molecules on each Ti atom

E = 0.40 eV / H₂ R(Ti-Ti) = 2.855 R(Ti-C) =2.333-2.347 R(Ti-H2) =1.94

NM	
E=0.0eV	
M=0.0	
C1	

ΗM
E=+24.8eV
M=36.0
lh

Ferri E=+24.52eV M=12.0 C2v

Summary

Hexagonal site is the most stable site for Ti atom.
Ti atoms tend to form clusters on C₆₀ surface.
For isolated Ti atom on hexagonal site, hydrogen is absorbed in molecular form.
Clustering of Ti atoms make some hydrogen

Clustering of T1 atoms make some hydrogen molecules dissociate, resulting in hydrogen bonded to Ti in atomic form more strongly. This would affect the hydrogen release and storage efficiency.

Li Coated C₆₀ Fullerene

Q. Sun, P. Jena, Q. Wang, and M. Marquez, "First Principles Study of Hydrogen Storage of Li₁₂C₆₀," J. Am. Chem. Soc, 128, 9741-9745, (2006)

E=0.0eV

E= + 2.20eV

Interaction energy: 4.50eV Weight percent: 13%

Fig. 9. Mass spectra of singly (top) and doubly (bottom) ionized $C_{60}Li_x$ clusters: note the prominent features at x = 7 for singly ionized and x = 8 for doubly ionized clusters and at x = 12 in both spectra.

Interaction between Li₁₂C₆₀ clusters-I

Interaction between Li₁₂C₆₀ clusters-II

E=1.18 eV

Interaction of H₂ with Li₁₂C₆₀ dimer

$E_{H2} = 0.18 \text{ eV}$

Interaction of H_2 with $Li_{12}C_{60}$ dimer

$E = 0.18 \text{ eV}/\text{H}_2$

Summary

> Li atoms do not cluster on C₆₀ fullerene surface Li atoms bind strongly to the fullerene >Hydrogen atoms bind molecularly > Binding energy of H₂ is small, but significant High gravimetric and volumetric density >Li₁₂C₆₀ has already been synthesized in the lab. > Interaction between Li₁₂C₆₀ dimers do not destroy the cluster geometry

Interaction of H₂ with Ti supported on organic molecules

Optimized geometries of Ti C_5H_5 (H_2)_n, (*n*=1-4) along with important bond lengths (Å). The energy difference (ΔE) between (b) and (b') is 0.12 eV; (c) and (c') is 0.02 eV with (b) and (c) being lower in energy than (b') and (c'), respectively.

Hydrogen Storage and the 18 electron rule

Ti 3d² 4s² Total number of electrons = 4
 C₅H₅ Total number of electrons = 5
 TiC₅H₅(H₂)₄ Total number of electrons = 17
 TiC₅H₅ cannot accommodate more than 4 H₂ molecules

TiC₄H₄ can accommodate 5 H₂ molecules
 TiC₈H₈ can accommodate 3 H₂ molecules

Optimized geometries of Ti C₄H₄ (H₂)_n (n=1-5) along with important bond lengths (Å). The energy difference (ΔE) between (a) and (a') is 0.35 eV, (b) and (b') is 0.29 eV,
(c) and (c') is 0.07 eV, and (d) and (d') is 0.05 eV with (a), (b), (c), and (d) being lower in energy than (a'), (b'), (c'), and (d'), respectively.

Optimized geometries of Ti C_8H_8 (H_2)_n (n=1-3) along with important bond lengths (Å). The energy difference (ΔE) between (b) and (b') is 0.02 eV with (b) being lower in energy than (b').

Table I. Energy gain ΔE_n (in eV) due to the successive addition of H₂ molecules to

$Ti(C_mH_m)$ complexes

System	n	$\Delta E_n (eV)$	
		$DMol^a$	Gaussian ^b
$TiC_5H_5(H_2)_n$	1	1.36	1.26
	2	0.51	0.47
	3	0.45	0.54
	4	0.56	0.56
$TiC_4H_4(H_2)_n$	1	1.03	1.10
/-	2	0.26	0.43
	3	0.47	0.30
	4	0.75	0.77
	5	0.22	0.35
$TiC_8H_8(H_2)_n$	1	1.07	1.12
	2	0.28	0.30
	3	0.36	0.20

a: PW91/DNP *b*: PW91PW91/(SDD: Ti; 6-31G**: C, H)

Hydrogen Storage in multi-decker complexes

> $(C_5H_5Ti)_n$, $(C_5H_5)_{n+1}Ti_n$ > $(C_6H_6Ti)_n$, $(C_6H_6)_{n+1}Ti_n$

Choosing substrates to prevent clustering

 $[(C_5H_5Ti)_2] (H_2)_8$ BE/H₂ = 0.35 eV

 $[(C_5H_5Ti)_2] (H_2)_9$ BE/H₂ = 0.30 eV

 $(C_5H_5Ti)_2$

∆E = 0.00 eV

∆E = 0.50 eV

∆E = 1.02 eV

$(C_5H_5)_3Ti_2$

??

Complex Light Metal Hydrides and Role of catalysts

C.M. Araujo, R. Ahuja, J.M.O. Guillen, and P. Jena, Appl. Phys. Letts. **86**, 251913 (2005); C. M. Araujo, S. Li, R. Ahuja, and P. Jena, Phys. Rev. B (in press)

Table 3 Hydrogen StorageCapacities of Hydrides

	Hydrogen
Hydride	$(wt\%)^a$
NaAlH ₄	7.5
LiAlH ₄	10.6
$Mg(AlH_4)_2$	9.3
NaBH ₄	10.7
$LiBH_4$	18.5
$Mg(BH_4)_2$	14.9

Sodium Alanates

Structure of Alanates

For more information, see website http://www.sc.doe.gov/bes/hydrogen.pdf

Sodium Alanate – NaAlH₄

- Discovered: (Finholt & Schlesinger 1955)
- \blacktriangleright Direct Synthesis: THF, 140°C, 150 bar H₂ (Ashby 1958, Clasen 1961)
- Principal Use: Chemical Reducing Agent
- Sensitive to air and water exposure reacting strongly with O_2 and OH

$$NaAlH_{4} \leftrightarrow \frac{1}{3}Na_{3}AlH_{6} + \frac{2}{3}Al + H_{2}$$
$$Na_{3}AlH_{6} \leftrightarrow 3NaH + Al + \frac{3}{2}H_{2}$$

Dymova, T. N., Eliseeva, N. G., Bakum, S. I., And Dergachev, Y. M., Doklady Akademii Nauk. SSSR, 215 (6) (1974) 1369

Fundamental Questions

- What is the nature of hydrogen bonding and how is it altered by the presence of TiCl₃?
- > What happens to TiCl₃?
- Where does Ti go? (surface, substitutional, interstitial)
- >What does it do and how does it do it?

Hypotheses

$ightarrow TiCl_3 + 3Na \rightarrow 3NaCl + Ti$

Ti can occupy the Na or Al site on the surface, interstitial, or bulk site.

 \succ Ti can combine with Al to form TiAl_x.

>Vacancies can be created at the Na and/or Al site.

NaAlH₄ super cell

2x2x1 96 atom

Total electron density of states of NaAlH₄ crystal

Formation Energy

Ti Substitution

Intrinsic

Na vacancy

(AlH₄)⁻ perfect

Na vacancy – local minimum

Na vacancy – global minimum

0.76 Å

Al vacancy

Hydrogen desorption energy

Conclusions

Boron nitride and carbon nano-cages are not suitable

- Coating these cages with metal atoms may increase the hydrogen uptake
- The presence of Na and Al vacancies are more important than Ti substitution at metal sites: Hydrogen desorption is molecular and exothermic
- The dominant role of Ti in reducing hydrogen desorption temperature may be an indirect one - it leads to vacancy formation which in turn reduces hydrogen desorption energy.

International Symposium on Scientific and Technological Issues in a Hydrogen Economy

November 12 - 15, 2007 Richmond, Virginia

http://www.has.vcu.edu/phy/ishe/