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Large and growing numbers of 
patents and publications involving 
TiO2-based photocatalysis
(Source: SciFinder (Chem Abstracts) search 
on “TiO2+photo-”)

Growing Interest in TiO2-Based PhotocatalysisGrowing Interest in TiO2-Based Photocatalysis
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Numerous companies market 
products or services involving 
use of TiO2 as a photocatalyst
(e.g., for self-cleaning glass, 
water treatment, air purification, 
disinfection, deodorization, etc.)
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Important issues
excitation (band structure and its
modification)
charge diffusion and trapping
molecular adsorption
charge transfer
reaction mechanism (coupled redox
and thermal chemistries)
poisons, promoters and spectators
surface and material structure
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• Annealing TiO2(110) in UHV results in creation of surface oxygen vacancy sites.
• Coverage of vacancies is linked to the concentration of bulk defects.
• Each vacancy is occupied by what is traditional referred to as 2 Ti3+ cations.
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e-?

O2 as an electron scavengerO2 as an electron scavenger

• Excited electrons trap at shallow band gap states on a sub-picosecond time scale.
(Colombo and Bowman, JPC 99 (1995) 11752 and 100 (1996) 18445)

• Electrons trapped in surface states can have very long lifetimes (~minutes) depending 
on the concentration of electron scavenger present.

• Many surface trap sites are OH-related. (Szczepankiewicz, et al. JPCB 106 (2002) 
2922)
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Temperature programmed measurementsTemperature programmed measurements
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Thermal desorption states of water on TiO2(110)Thermal desorption states of water on TiO2(110)

Desorption states fill 
sequentially.

Coverage in 500 K 
TPD peak is equal to 
the oxygen vacancy 
population.

2nd layer is H-bonded 
to bridging O/OH sites

Multilayer fills with 
‘non-classical’
coverage-dependent 
behavior.

Hugenschmidt et al., Surf. Sci. 302 (1994) 329.  
Henderson, Surf. Sci. 355 (1996) 151; Lang. 12 (1996) 5093.
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Simulating the role of O2 via reaction with OH groups at Ti3+ sitesSimulating the role of O2 via reaction with OH groups at Ti3+ sites

(Henderson, et al. JPC B 107 
(2003) 534)
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TMAA alone (no UV or O2)
300 L O2 on TMAA
UV irradiation in UHV (no O2)
130 L O2 after UV irradiation
in UHV
UV irradiation in 5x10-7 O2

O2 reaction with Ti(3+)-OH during TMAA photodecompositionO2 reaction with Ti(3+)-OH during TMAA photodecomposition

• Light generated Ti3+-OH groups 
behave toward O2 like Ti3+-OH 
groups formed from water 
dissociation at oxygen vacancies

Water from TMAA on TiO2(110) w/  7% vac.
OH groupsOH*: modified by
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OH groups
on O2- rows

Titration of Ti(3+)-OH groups with O2Titration of Ti(3+)-OH groups with O2

(11x11 nm2)

UV irradiation of TMA
in UHV (no O2)

TMA

• Tunneling features located between TMA/Ti4+ rows before O2 exposure are mostly  
absent after O2 exposure at RT

• Assignment of spots on bridging O2- rows to Ti3+-OH groups is consistent with
STM literature: 
- water dissociation at vacancies (Brookes et al., PRL 87 (2001) 266103/1; Schaub, et al. 

PRL 87 (2001) 266104/1)
- H atom exposure to the clean surface (Suzuki, et al. PRL 84 (2000) 2156)

Exposure of UV-irradiated TMA
to 100 L O2 in the dark

dashed 
lines on 

TMA/Ti4+

rows
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Detecting surface electronic/vibrational modes using
electron energy loss spectroscopy (EELS/HREELS)

Detecting surface electronic/vibrational modes using
electron energy loss spectroscopy (EELS/HREELS)

A
B

e- (energy=E) e- (energy=E-ΔE)

ΔE is associated with electron
excitation of vibrational/electronic
transitions at the surface.
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HREELS of H2O and O2 coadsorbed on vacuum annealed TiO2(110)HREELS of H2O and O2 coadsorbed on vacuum annealed TiO2(110)

ν(OH) mode at 3665 cm-1 is 
due to OHbr groups formed 
from water dissociation at 
vacancies.

O-H product from the reaction 
of OHbr and O2 is transparent in 
HREELS.  (product is H-
bonded and/or tilted?)

OHbr groups are not formed 
from water adsorption if 
vacancies are not available.
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Vacancy oxidation from reaction between O2 and OHbrVacancy oxidation from reaction between O2 and OHbr

• Loss at 0.8 eV is due to a 
excitation of Ti3+ (not due 
to excitation into TiO2
conduction band)

• Ti3+ cations, associated 
with the 0.8 eV state, are 
oxidized during the 
reaction of O2 with OHbr
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(2x1) overlayer of TMA on TiO2(110)(2x1) overlayer of TMA on TiO2(110)

Review of carboxylic acids on TiO2(110): H. Onishi, Springer Ser. Chem. Phys., 70 (2003) 75.
Photo-induced hydrophilicity on TiO2: J.M. White, et al. JPCB 107 (2003) 9029.
Photochemistry of TMAA on TiO2(110): M.A. Henderson, et al. JACS 125 (2003) 14974.
Photochemical rate changes due to ‘hydrophobic-to-hydrophilic’ transition: H. Uetsuka, et al. 

JPCB 108 (2004) 10621.

Ti4+

O
bridging

O2-

trimethyl
acetate
(TMA) C

O

acid
proton

VDW diameter
of TMA• TMAA dosed at RT yields a 

dense-packed TMA adlayer that 
is stable in UHV at RT and 
hydrophobic in nature.
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TMA photodecomposition pathway on TiO2(110)TMA photodecomposition pathway on TiO2(110)

C4 alcohol(a) ?
(CH3)3CH (a)

(CH3)2C=CH2 (a)

(CH3)2CO (a)
CO2 (a)
H2O (a)
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photo-
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Henderson, et al. JPC B 107 (2003) 9029; 108 (2004) 3592; 108 (2004) 10621; 
108 (2004) 18932; 109 (2005) 12062; 109 (2005) 12417; Langmuir 21 (2005) 
3443; JACS 125 (2003) 14974; J. Catal. 238 (2006) 111, 153.
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STM of TMAA dosed on TiO2(110) at RTSTM of TMAA dosed on TiO2(110) at RT
(b) satn. TMA on ‘a’(a) vacuum annealed surface

0.12 ML vacancies

(d) satn. TMA on ‘c’(c) 100 L O2 on ‘a’

0.09 ML O adatoms
0.04 ML vacancies

0.50 ML TMA

0.45 ML TMA

oxygen
vacancy

oxygen
adatom

On the clean surface:
- bright rows = Ti4+

- dark rows = O2-

(U. Diebold, SSR 48 (2003) 53.)

Pre-oxidation affects both 
TMA order and rate of TMA 
photodecomposition.

M.A. Henderson, et al. JACS 125 (2003) 14974.
H. Uetsuka, et al. JPCB 108 (2004) 10621.
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Photo-excited electron trapping on TMA-covered TiO2(110)Photo-excited electron trapping on TMA-covered TiO2(110)

• Ti3+ feature same as 
that observed from 
vacancies

• Electron trapping 
not observed on the 
clean surface

• Electron trapping 
yield correlates with 
the photo-desorption 
yields from hole 
transfer; both are 
needed!

• O2 titrates trapped 
electrons

no O2; UV irradiation at RT
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STM during photodecomposition of TMASTM during photodecomposition of TMA

(a) TMA monolayer on a vacuum-annealed TiO2(110) surface, and after UV irradiation at 280 K in 
1x10-7 torr of O2 for (b) 10, (c) 15, (d) 20, and (e) 30 min. (Image size: 88x88 nm2; Xe lamp)

(a) (b)

(e)(d)

(c)

TMA
(on Ti-rows)

OH?

• Voids develop in 
TMA layer at an 
accelerated rate 
during photolysis

• Voids possess 
weak spots 
attributable to OH 
groups

• TMA groups on 
steps show lower 
reactivity than 
those on terraces.

no light

30 min

20 min

15 min10 min



22

1

.5

0

Q
M

S 
si

gn
al

 (x
10

-3
 M

L/
se

c)

3002001000
Time (seconds)

Influence of O2 on TMA photodecomposition selectivityInfluence of O2 on TMA photodecomposition selectivity

UV on UV off

isobutene
(x1)

isobutane
(x5)

0.5 ML TMAA at RT
UV irradiation at RT

UHV
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UHV

2x10-6 torr O2

• Selectivity in the first step 
of TMA photooxidation
shows strong O2 pressure 
dependence 

• Temporal changes in the 
selectivity are linked to 
coverage dependence in 
TMA photodecomposition

(Henderson et al.
J. Catal. 238 (2006) 153)
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Photocatalytic selectivity and adlayer phase dynamicsPhotocatalytic selectivity and adlayer phase dynamics
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TMA photodecomposition mechanism for photolysis at 100 KTMA photodecomposition mechanism for photolysis at 100 K

C4 alcohol(a) ?
(CH3)3CH (a)
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Acetone thermal chemistry on TiO2(110)Acetone thermal chemistry on TiO2(110)

• Little or no thermal 
decomposition

• Acetone desorption is 
influenced by coverage 
and the surface redox
condition 

• Pre-oxidation 
stabilizes acetone and 
minimizes acetone-
acetone repulsions

acetone-oxygen
complex
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η1-acetoneice

μ(g) = 2.9 D
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d6-acetone on
reduced TiO2(110)

7% oxygen vacancies

filled vacancies
and reactive O species
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Photodecomposition of 1 ML acetone on TiO2(110)Photodecomposition of 1 ML acetone on TiO2(110)
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• Acetone is photo-
decomposed to 
acetate, which 
thermally decomposes 
to ketene at 620 K.
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Cross sections for acetone photodecomposition from TPDCross sections for acetone photodecomposition from TPD
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 mass 58

1 ML acetone
σ = 3 x 10-22 cm2

0.25 ML acetone
σ = 3 x 10-21 cm2

fast rate for both coverages
• Cross section of 
acetone photo-
decomposition is 
coverage dependent; 
greater for lower 
coverages 

• Fast initial and 
slow subsequent 
photo-decomposition 
rates

• Cross sections 
resemble gas phase 
values

Photon exposure (x1021 cm-2)     
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• Methyl radicals 
ejected from the 
surface during 
photolysis

• Fast and slow 
evolution of methyl 
radicals

• H2CO is formed 
from reaction of 
methyl radical on the 
walls of the mass 
spectrometer. (H2CO
in powder studies 
from ejected CH3
radicals?)
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Photodesorption during 
UV irradiation of acetone on TiO2(110) 

Photodesorption during 
UV irradiation of acetone on TiO2(110) 
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Cross sections for methyl radical ejectionCross sections for methyl radical ejection

fast rate
σ ~ 10-18 cm2

slow rate
σ = 6 x 10-21 cm2

• Cross section for fast 
rate is two orders of 
magnitude greater than 
the slow rate

• Cross section for 
slow rate (~6x10-21

cm2) matches that 
obtained by TPD 
(~3x10-21 cm2); this 
suggests conversion of 
acetone to acetate and 
methyl radical ejection 
are mechanistically 
linked.
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Proposed acetone photodecomposition mechanismProposed acetone photodecomposition mechanism
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Hydrogen production on TiO2Hydrogen production on TiO2
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ConclusionsConclusions
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Meaningful insights into the molecular-level details of heterogeneous 
photocatalysis can be obtained from model studies.
- Identification of charge transfer and trapping sites 
- Detection of adsorbed and photodesorbed intermediates
- Determination of reaction pathways and selectivities
- Measurement of cross sections (rates)
- Observation of spatial effects such as evolution of hydrophobic and  

hydrophilic domains


