Photocatalysis on Single Crystal TiO₂ Surfaces

Michael A. Henderson Institute for Interfacial Catalysis Pacific Northwest National Laboratory Richland, WA

Pacific Northwest National Laboratory

Outline

Motivation for modeling heterogeneous photocatalysis using single crystals

Examples studies on rutile $TiO_2(110)$

- oxygen and water
- trimethyl acetic acid
- acetone

Conclusions

Growing Interest in TiO₂-Based Photocatalysis

Numerous companies market products or services involving use of TiO_2 as a photocatalyst (e.g., for self-cleaning glass, water treatment, air purification, disinfection, deodorization, etc.)

Large and growing numbers of patents and publications involving TiO_2 -based photocatalysis (Source: SciFinder (Chem Abstracts) search on "TiO₂+photo-")

Photocatalysis on TiO₂

Important issues

- excitation (band structure and its modification)
- **2** charge diffusion and trapping
- **3** molecular adsorption
- **4** charge transfer
- reaction mechanism (coupled redox and thermal chemistries)
- **6** poisons, promoters and spectators
- surface and material structure

the analytical focus of most photooxidation studies

Rutile TiO₂(110) single crystal surface

• Annealing $TiO_2(110)$ in UHV results in creation of surface oxygen vacancy sites.

• Coverage of vacancies is linked to the concentration of bulk defects.

• Each vacancy is occupied by what is traditional referred to as 2 Ti^{3+} cations.

Outline

Motivation for modeling heterogeneous photocatalysis using single crystals

Examples studies on rutile TiO₂(110) - oxygen and water

- trimethyl acetic acid
- acetone

Conclusions

- Excited electrons trap at shallow band gap states on a sub-picosecond time scale. (Colombo and Bowman, JPC 99 (1995) 11752 and 100 (1996) 18445)
- Electrons trapped in surface states can have very long lifetimes (~minutes) depending on the concentration of electron scavenger present.
- Many surface trap sites are OH-related. (*Szczepankiewicz, et al. JPCB 106 (2002)* 2922)

Temperature programmed measurements

Thermal desorption states of water on TiO₂(110)

Desorption states fill sequentially.

Coverage in 500 K TPD peak is equal to the oxygen vacancy population.

2nd layer is H-bonded to bridging O/OH sites

Multilayer fills with 'non-classical' coverage-dependent behavior.

O2 reaction with Ti(3+)-OH during TMAA photodecomposition

• Light generated Ti^{3+} -OH groups behave toward O₂ like Ti^{3+} -OH groups formed from water dissociation at oxygen vacancies

11

- Tunneling features located between TMA/Ti⁴⁺ rows before O₂ exposure are mostly absent after O₂ exposure at RT
- Assignment of spots on bridging O²⁻ rows to Ti³⁺-OH groups is consistent with STM literature:
 - water dissociation at vacancies (*Brookes et al., PRL 87 (2001) 266103/1; Schaub, et al. PRL 87 (2001) 266104/1*)
 - H atom exposure to the clean surface (Suzuki, et al. PRL 84 (2000) 2156)

Outline

Motivation for modeling heterogeneous photocatalysis using single crystals

Examples studies on rutile $TiO_2(110)$

- oxygen and water
- trimethyl acetic acid
- acetone

Conclusions

Review of carboxylic acids on TiO₂(110): H. Onishi, Springer Ser. Chem. Phys., 70 (2003) 75.
Photo-induced hydrophilicity on TiO₂: J.M. White, et al. JPCB 107 (2003) 9029.
Photochemistry of TMAA on TiO₂(110): M.A. Henderson, et al. JACS 125 (2003) 14974.
Photochemical rate changes due to 'hydrophobic-to-hydrophilic' transition: H. Uetsuka, et al. JPCB 108 (2004) 10621.

Photo-excited electron trapping on TMA-covered TiO₂(110)

• Ti³⁺ feature same as that observed from vacancies

• Electron trapping not observed on the clean surface

• Electron trapping yield correlates with the photo-desorption yields from hole transfer; both are needed!

• O₂ titrates trapped electrons

STM during photodecomposition of TMA

(a) TMA monolayer on a vacuum-annealed TiO₂(110) surface, and after UV irradiation at 280 K in $1x10^{-7}$ torr of O₂ for (b) 10, (c) 15, (d) 20, and (e) 30 min. (Image size: 88x88 nm²; Xe lamp)

Influence of O₂ on TMA photodecomposition selectivity

Outline

Motivation for modeling heterogeneous photocatalysis using single crystals

Examples studies on rutile $TiO_2(110)$

- oxygen and water
- trimethyl acetic acid

- acetone

Conclusions

Acetone thermal chemistry on TiO₂(110)

• Little or no thermal decomposition

• Acetone desorption is influenced by coverage and the surface redox

• Pre-oxidation stabilizes acetone and minimizes acetoneacetone repulsions

 $\mu_{(g)} = 2.9 \text{ D}$

Photodecomposition of 1 ML acetone on TiO₂(110)

Cross sections for acetone photodecomposition from TPD

• Cross section of acetone photodecomposition is coverage dependent; greater for lower coverages

• Fast initial and slow subsequent photo-decomposition rates

• Cross sections resemble gas phase values

Photodesorption during UV irradiation of acetone on TiO₂(110)

• Methyl radicals ejected from the surface during photolysis

• Fast and slow evolution of methyl radicals

• H_2CO is formed from reaction of methyl radical on the walls of the mass spectrometer. (H_2CO in powder studies from ejected CH_3 radicals?)

Hydrogen production on TiO₂

Conclusions

Meaningful insights into the molecular-level details of heterogeneous photocatalysis can be obtained from model studies.

- Identification of charge transfer and trapping sites
- Detection of adsorbed and photodesorbed intermediates
- Determination of reaction pathways and selectivities
- Measurement of cross sections (rates)
- Observation of spatial effects such as evolution of hydrophobic and hydrophilic domains

Acknowledgements

PNNL: Dr. Janos Szanyi

- External: Prof. Hiroshi Onishi and Dr. Hiroshi Uetsuka (Kobe University, Japan)Prof. Mike White (University of Texas, Austin, TX)Mr. Matt Robbins (Stanford University, Stanford, CA)
- Funding: DOE Office of Basic Energy Sciences, Divisions of Chemical Sciences and Materials Sciences