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Photocatalysis on TiO,

Important issues

© excitation (band structure and its
modification)

@® charge diffusion and trapping

© molecular adsorption

O charge transfer

© reaction mechanism (coupled redox
and thermal chemistries)

® poisons, promoters and spectators

@ surface and material structure

TiO, photocatalysis cartoon the analytical focus of most
typical found in the literature photooxidation studies



Rutile T10,(110) single crystal surface

unit cell
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 Annealing TiO,(110) in UHV results in creation of surface oxygen vacancy sites.

» Coverage of vacancies is linked to the concentration of bulk defects.
 Each vacancy is occupied by what is traditional referred to as 2 Ti3* cations.
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O, as an electron scavenger

hy hv

charge removed
as an H atom

charge removed
as an electron

 Excited electrons trap at shallow band gap states on a sub-picosecond time scale.
(Colombo and Bowman, JPC 99 (1995) 11752 and 100 (1996) 18445)
» Electrons trapped in surface states can have very long lifetimes (~minutes) depending

on the concentration of electron scavenger present.
» Many surface trap sites are OH-related. (Szczepankiewicz, et al. JPCB 106 (2002)
2922)
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Thermal desorption states of water on T10,(110)
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Hugenschmidt et al., Surf. Sci. 302 (1994) 329.
Henderson, Surf. Sci. 355 (1996) 151; Lang. 12 (1996) 5093.

Desorption states fill
sequentially.

Coverage in 500 K
TPD peak is equal to
the oxygen vacancy
population.

2nd layer is H-bonded
to bridging O/OH sites

Multilayer fills with
‘non-classical’
coverage-dependent
behavior.




m/e = 18 QMS signal (x 10° Ccps)
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O, reaction with Ti(3+)-OH during TMAA photodecomposition

18 QMS signal (arb. units)
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Titration of Ti1(3+)-OH groups with O,

UV irradiation of TMA Exposure of UV-irradiated TMA
in UHV (no O,) to 100 L O, in the dark

dashed
lines on
TMA/Ti*
rows

¥ OH groups
= on 02 rows

‘_} | (11x11 nm?)

» Tunneling features located between TMA/Ti* rows before O, exposure are mostly

absent after O, exposure at RT
» Assignment of spots on bridging O% rows to Ti3*-OH groups is consistent with

STM literature:

- water dissociation at vacancies (Brookes et al., PRL 87 (2001) 266103/1; Schaub, et al.
PRL 87 (2001) 266104/1)

- H atom exposure to the clean surface (Suzuki, et al. PRL 84 (2000) 2156)
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Detecting surface electronic/vibrational modes using
electron energy loss spectroscopy (EELS/HREELS)

e (energy=E)

W >

e (energy=E-AE)

AE 1s associated with electron

excitation of vibrational/electronic
transitions at the surface.
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HREELS of H,O and O, coadsorbed on vacuum annealed TiO,(110)
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2 HOon
B oxidized
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Electron energy loss (cm '1)

4000

v(OH) mode at 3665 cm-1 is
due to OH,, groups formed
from water dissociation at
vacancies.

O-H product from the reaction
of OH,, and O, is transparent in
HREELS. (product is H-
bonded and/or tilted?)

OH,, groups are not formed
from water adsorption if
vacancies are not available.
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Intensity (x 1¢* cps)
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Vacancy oxidation from reaction between O, and OH,,

ﬁw‘mﬂmmm

Bl heated at 850 K
0.20 ML OH,,

B O,on0.20 ML OH,,

excitation of
Ti3* sites

band-to-band
excitation

Electron energy loss (eV)

elLossat0.8eVisduetoa
excitation of Ti3* (not due
to excitation into TiO,
conduction band)

e Ti3* cations, associated
with the 0.8 eV state, are
oxidized during the

reaction of O, with OH,,
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(2x1) overlayer of TMA on Ti0O,(110)

trimethyl
acetate

* TMAA dosed at RT yields a
dense-packed TMA adlayer that
Is stable in UHV at RT and
hydrophobic in nature.

Review of carboxylic acids on TiO,(110): H. Onishi, Springer Ser. Chem. Phys., 70 (2003) 75.

Photo-induced hydrophilicity on TiO,: J.M. White, et al. JPCB 107 (2003) 9029.

Photochemistry of TMAA on TiO,(110): M.A. Henderson, et al. JACS 125 (2003) 14974.

Photochemical rate changes due to ‘hydrophobic-to-hydrophilic’ transition: H. Uetsuka, et al.
JPCB 108 (2004) 10621.
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TMA photodecomposition pathway on TiO,(110)

C, alcohol , ?
(CHS)SCH (@)
(CH;),C=CH, @)

hv| O,
‘\‘ photo-
CH.),CO .., desorption
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CO, +? -
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Henderson, et al. JPC B 107 (2003) 9029; 108 (2004) 3592; 108 (2004) 10621
108 (2004) 18932; 109 (2005) 12062; 109 (2005) 12417; Langmuir 21 (2005)
3443; JACS 125 (2003) 14974; J. Catal. 238 (2006) 111, 153.
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STM of TMAA dosed on TiO,(110) at RT

(a) vacuum annealed surface
-

(b) satn. TMA on &’ On the clean surface:
i - bright rows = Ti%*
- dark rows = 0%
(U. Diebold, SSR 48 (2003) 53.)

Pre-oxidation affects both
TMA order and rate of TMA
photodecomposition.
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Intensity (arb. units)

Photo-excited electron trapping on TMA-covered TiO,(110)

no O,; UV irradiation at RT
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(a) — TMAA adsorbed
on oxidized TiO,(110)

(b) m 10sec UV
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Electron energy loss (eV)

e Ti3* feature same as
that observed from
vacancies

» Electron trapping
not observed on the
clean surface

e Electron trapping
yield correlates with
the photo-desorption
yields from hole
transfer; both are
needed!

* O, titrates trapped
electrons
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STM during photodecomposition of TMA

 Voids develop in
TMA layer at an
accelerated rate
during photolysis

* \Voids possess
weak spots
attributable to OH
groups

Son o TMA AN S
L% (onTi-rows) g R Gty
;# e T NG L) TMA groups on

steps show lower

reactivity than
those on terraces.

(a) TMA monolayer on a vacuum-annealed TiO,(110) surface, and after UV irradiation at 280 K in
1x10-" torr of O, for (b) 10, (c) 15, (d) 20, and (e) 30 min. (Image size: 88x88 nm?; Xe lamp)
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QMS signal (x10° ML/sec)

Influence of O, on TMA photodecomposition selectivity

| |
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1E S « Selectivity in the first step
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5 e Temporal changes in the
selectivity are linked to
coverage dependence in
TMA photodecomposition
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Photocatalvytic selectivity and adlayer phase dynamics

(2x1) TMA/TiOZ(llO)
(11 ———rT— . i 100%
. 1 PSRE. o 5 |v||_ TMA at RT 1™ isobiiterie
2X 0 ° 5x10 7 UV lrradlated at RT J
L [ 2 107 : ln O2 (torr) e ¥
| 5 : 5x1o8 1 R
| g h i (™
i Ell CO,tene
I s
L0 | : +OH (HZO)
hydropr_nlllc 4 lxlO 4]
doalns

5x10 4]

UV in

1:1 ratio of
<+ |sobutene
and isobutane

2TMA+hv

’

2CO,+ene
+ane

hydrophobic UV in
UHV

Irradiation time (seconds)

28



Outline

Motivation for modeling heterogeneous
photocatalysis using single crystals

Examples studies on rutile Ti1O,(110)
- 0Xygen and water
- trimethy!l acetic acid
- acetone

Conclusions

24



TMA photodecomposition mechanism for photolysis at 100 K

CH,
H3C\(‘;/CH3 C, alcohol , ?
L v (CH)C (CH,),CH
: VRN (h*) CO; (CH,),C=CH, (@)
O O
INARRRNY hv| O,
hv, O,
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Mass 46 QMS signal (arb. units)

125

Acetone thermal chemistry on T10O,(110)

filled vacancies
and reactive O species |l

\ dg-acetone on
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e Little or no thermal
decomposition

 Acetone desorption is
influenced by coverage
and the surface redox

RGN condition
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0.12 * Pre-oxidation
8%; stabilizes acetone and
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acetone repulsions
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Intensity (arb. units)

Organic and O, thermal chemistry:

Conversion of a photo-inactive species to a photo-active species
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Photodecomposition of 1 ML acetone on T10,(110)

Peak area (a.u.)~]
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Immediate reaction product
does not leave the surface! 28



Cross sections for acetone photodecomposition from TPD

15k

acetone
TPD peak area
data taken from:
@ mass 42
[ mass 43

A mass 58

1 ML acetone
o =3x102%2 cm?

0.25 ML acetone
o =3x1072 ¢m?

s /™ l L (' . L l L L L L l-ﬁ

0 5 1 1.5

Photon exposure (X102 cm-2)

* Cross section of
acetone photo-
decomposition is
coverage dependent;
greater for lower
coverages

e Fast initial and
slow subsequent
photo-decomposition
rates

» Cross sections
resemble gas phase
values
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Photodesorption signal (arb. units)

Photodesorption during
UV irradiation of acetone on T10O,(110)
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» Methyl radicals
ejected from the
surface during
photolysis

e Fast and slow
evolution of methyl
radicals

* H,CO is formed
from reaction of

methyl radical on the
walls of the mass
spectrometer. (H,CO
in powder studies
from ejected CH,
radicals?)
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Cross sections for methyl radical ejection

 Cross section for fast
rate is two orders of
magnitude greater than
the slow rate

* Cross section for
slow rate (~6x10-%1
cm?) matches that

' obtained by TPD
(~3x10-2L cm?); this
suggests conversion of
acetone to acetate and
% methyl radical ejection
are mechanistically
linked.

slow rate
o =6 X 102! cm?

0 1 2 3 4
Photon exposure (x 10" cm'z)
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Proposed acetone photodecomposition mechanism
CH CH

3 3
In the //C 2 O, //C.‘x/ acetone-oxygen
dark o Ti3+ 0 complex
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CH, ~R
CH

Uy C/qﬁs o g s

fast s /Q\ acetate
process o ﬁ hv 2 3 g

s Tidr —v— e py
process Ti** + O, Ti*t + Oy

(O, 7lux  acetone + O/O,"

dependent) acetone-oxygen complex
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Hydrogen production on TiO,

2-

AN + fOOH
Ti*t  Ti4 { ;

O/'
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trapped 0O e

AT e
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H

Pt A .
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What about the holes?
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~Conclusions
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