Amineboranes for Hydrogen Storage

Michael Heinekey University of Washington

UW

UNC

Karen Goldberg Melanie C. Denney Vincent Pons Travis Hebden Denise Mery Brandon Dietrich

Maurice Brookhart Inigo Göttker-Schnetmann **Barcelona** Augusti Lledos, Jose Lluch **PNNL** Tom Autrey, John Linehan

Crystallography:

Antonio DiPasquale, Arnie Rheingold (UCSD) Tom Koetzle, Paula Piccoli, Art Schultz (Argonne)

What do we mean by Structure?

- A set of bond distances and bond angles
- Generally, a static concept
- For stable molecules, structure is usually independent of temperature

Characterization of H₂ Complexes by ¹H NMR

- "Hydride" resonances at high field
- Deuterium: nuclear spin I = 1
- → observation of a 1:1:1 triplet in the ¹H spectrum
- 25 Hz < J_{HD} < 35 Hz (HD gas: J_{HD} = 43 Hz)
- $dH-H = 1.44 0.0168 J_{HD}$

D. M. Heinekey, V. Pons et. al. J. Am. Chem. Soc. 2004, 126, 8813.

W. T. Klooster, T. F. Koetzle, G. Jia, T. P. Fong, R. H. Morris and A. Albinati, J. Am. Chem. Soc. 1994, 116, 7677.

Table 3.	Coupling Constants ${}^{1}J(H,D)$ of	
[Ru(H···D	$O(C_5Me_5)(dppm)]BF_4$ in CD_2Cl_2 as Determined by	y ¹ H
NMR Spo	ectroscopy at 400 MHz	

temp, K		$^{1}J(H,D), Hz$	
	295	21.1 ± 0.2	
	273	21.5 ± 0.1	
	253	21.6 ± 0.2	
	233	22.0 ± 0.1	
	213	22.3 ± 0.2	

J. K. Law, H. Mellows and D. M. Heinekey J. Am. Chem. Soc. 2001, 123, 2085

Lledos et. al. J. Am. Chem. Soc. 1997, 119, 9840

¹H NMR spectrum (hydride region) of a sample partially labeled with D and T

Law, J. K.; Mellows, H.; Heinekey, D. M. J. Am. Chem. Soc. 2002, 124, 1024

(pincer)Ir(H)2 complexes are active alkane dehydrogenation catalysts.*

Structure? In Silico: dH-H = 1.66 Å Niu and Hall, *J.Am. Chem. Soc.* **1999**, *121*, 3992.

*e.g. Jensen et al. *Chem. Comm.***1999**, 2443; Goldman et al. *J. Am. Chem. Soc.* **2002**, *124*, 11404; Brookhart et al. *J. Am. Chem. Soc.* **2004**, *126*, 1804; Jensen et al. *Inorg. Chim. Acta.* **2004**, *357*, 2953

Most active catalyst for alkane dehydrogenation:

 J_{HD} = 7.5 Hz(pentane); T dependent J_{HD} = zero ! (CH₂Cl₂)

President's Hydrogen Fuel Initiative

The Hydrogen Fuel Initiative aims to reverse America's growing dependence on foreign oil by developing the technology needed for commercially viable hydrogen-powered fuel cells.

"With a new national commitment, our scientists and engineers will overcome obstacles to taking these cars from laboratory to showroom so that the first car driven by a child born today could be powered by hydrogen, and pollution-free.."

President Bush, State of the Union Address, January 28, 2003

One obstacle is hydrogen storage ...what is needed?

Appropriate thermodynamics, High storage capacity (High gravimetric and volumetric densities), Fast kinetics, Long lifetime, Effective heat transfer, High mechanical strength and durability,Safe

http://www1.eere.energy.gov/hydrogenandfuelcells/presidents_initiative.html

Ammonia Borane as a H₂ Storage Material

DOE Storage Targets

	2010	2015
Target wt% usable H ₂	6.0	9.0
Vol. density (kgH ₂ .m ⁻³)	45	80

Storage Potential of Ammonia Borane

H ₂ Released	1	2	3
Wt% H ₂	6.5	13.0	19.6
Vol. density	48	96	145
Product	$[H_2NBH_2]_n$	[HNBH] _n	[NB] _n

Appropriate Thermodynamics

- Gas phase calculations predict ammonia borane dehydrogenation is near thermoneutral.*
- Important for reversibility.

*Dixon, D. A.; Gutowski, M. J. Phys. Chem. A 2005, 109, 5129.

A Better Catalyst Choice?

 $n \operatorname{NH}_{3}\operatorname{BH}_{3} \xrightarrow{[\operatorname{catalyst}]} [\operatorname{NH}_{2}\operatorname{BH}_{2}]_{n} + n \operatorname{H}_{2}$ THF, rt

- Amineboranes are isoelectronic with alkanes.
- (pincer)Ir(H)₂ complexes are active alkane dehydrogenation catalysts.*

*e.g. Jensen et al. *Chem. Comm.***1999**, 2443; Goldman et al. *J. Am. Chem. Soc.***2002**, *124*, 11404; Brookhart et al. *J. Am. Chem. Soc.***2004**, *126*, 1804; Jensen et al. *Inorg. Chim. Acta.***2004**, *357*, 2953

Demonstration of H₂ Release

Characterization of Solid Product $n \operatorname{NH}_{3}\operatorname{BH}_{3} \xrightarrow{[\operatorname{catalyst}]]{}_{\mathrm{THF, rt}}} [\operatorname{NH}_{2}\operatorname{BH}_{2}]_{n} + n \operatorname{H}_{2}$ solid

- Solid state ¹¹B NMR.
- Infrared spectroscopy.
- Powder X-ray diffraction.
- Non-volatile product should not poison fuel cell.

Böddeker, K. W.; et al. J. Am. Chem. Soc. 1966, 88, 4396

Comparison with Previous Best Catalyst			
	[Rh(1,5-COD)(µ-Cl)] ₂ *	$ \begin{array}{c} O - P^{t}Bu_{2} \\ H \\ H \\ O - P^{t}Bu_{2} \end{array} $	
Catalyst Loading	0.6 mol%	0.5 mol%	
Temperature (°C)	45	25	
H ₂ evolved (equiv.)	2	1	
Products	Borazine	$[H_2NBH_2]_n$	
Time	48 – 84 hr	< 15 min	

At least 200 fold increase in reaction rate over previous best.

*Manners et al. J. Am. Chem. Soc. 2003, 125, 9424.

Neutron Structure

^{*}ctr is the center of the B1 – H1C bond

IR: B-H stretches at 2466(s), 2441(s), 2285(s) and 2219 cm⁻¹(m) and Ir-H at 1930 cm⁻¹(m)

Reversibility?
New (last week) solution
calorimetry data from PNNL:

 $NH_3BH_3 \longrightarrow 1/5 (NH_2BH_2)_5 + H_2$

 Δ H = -28 kJ/mol

Acknowledgements

DOE Center of Excellence For Chemical Hydrogen Storage

