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THE SOLAR CHALLENGE

e With a projected global population of 12 billion by 2050
coupled with moderate economic growth, the total global energy
consumption is estimated to be ~28 TW. Current global use is
~11 TW.

e To cap CO, at 550 ppm (twice the pre-industrial level), most of
this additional energy needs to come from carbon-free sources.

e Solar energy is the largest non-carbon-based energy source
(100,000 TW).

e However, it has to be converted at reasonably low cost.

“A Vision for Photovoltaic Energy Production” Report by the European
Photovoltaic Technology Research Advisory Council ((PV-TRAC)” EUR 21242 (2005)



Photoelectrochemical tandem cell for hydrogen
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Hydrogen generation by solar photolysis of water

The three options:

1. The brute force approach:
connect at least 4 silicon PV cells in series and couple to
water electrolyzer

2. The integrated tandem cell approach

3. The direct water decomposition by photoelectrochemical
cells. Remains the “Holy Grail” of research in photoelectrochemistry



BasicResearch Needs
for Solar Energy Utilization

25.00 -
Report of the Basic Energy  Cwmremad ard
Saences Workshop on % 2000 i  wiymerance _—
Solar Energy Utilization L= ’ aar W Elecimiyzer Lost
April 18-21, 2005 = & Sciar Blecirc Cost
E 15.00
5 1000 357
e
=
= £ 1213
" 2.00
2303
0.00 . .
®17_TEED 0. 6E'Eg
5T E1.5Wo
2005 price 2020 targel
Effect of Solar Module Cost
FaN S omeo of Figore 7! Hydrogen sellmz prics for carbon-fres soles electncity (assamas
e 42 kg'bour production rats)

With a 2020 solar afficiency of 20% and an elactrobyzer system efficiency of 65%, the overal
solar comversion efficiency will be about 13%. It 15 not wmreasonable fo foreses that by 2000,
systens for photocatalyiic hydrogen svolufion, where Iydozen & evolved directly fom a
photocatalyviic arface, would profably be more effective than electmlyzas M penemting
Iydirozzn el

Quotation from the DOE report page 209



Characterisation Standard Air Mass1.5
* intensity of 1000 W/m?2

» spectral power distribution corresponding to AM1.5 = 1Sun

» temperature 298 K

sun at zenith

sun at angle 6
to zenith

AIRMASS = SO
Z0

earth’s surface atmosphere



THE SOLAR RESOURC

Solar Spectrum and Available Photocurrent
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Water Photoelectrolysis Cell
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Main advantage: energy capture conversion and storage are
combined in a single system
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The semiconductor /electrolyte interface
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Generation of hydrogen by photoelectrolysis of water
n-type semiconductor electrode

. water

Iron oxide Pt

| Gonduction band EWL—
s

Valence band

E/eV

E? {OHHO,)

n-4iype Anode Electrolyte Pt-Cathode

4 OH - 0, + 2H,0 + 4e" 4e + 4H,0 > 2H, + OH

2H.0 + 4 /v > 0O, + 2H,

A. Fujshima and K. Honda Nature 1972, 238, 37-38, Water photolysis on TiO2 electrodes



Input: solar light of air mass 1.5 global (1000 W/m?2)

Output: hydrogen, standard heat of combustion
AH = - 280 kJ/mol (=1.45 eV/electron)

Solar to chemical conversion efficiency: output/input

N = lon [MA/CM?] X (1.45 - Vpias)
or
N = lpn [MA/CM?] X (1.23 - Vpias)

in terms of free energy of combustion
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The Z Scheme of biphotonic Water Photolysis
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Figure 3: Schematics of tandem cell: Current flow, light absorption
and device composition. Red part of spectrum drives solar cell.



The oxide semiconductor top
electrode




Nanocrystalline oxide photoanode

Advantage of nanocrystalline
Oxides electrodes:

1) translucent electrode -
avoids light scattering losses

2) Small size is within minority
carrier diffusion length, the valence
band holes reach the surface before
they recombine.

conductive glass suppo

mesoscopic WO, or Fe203 film
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I-V curves for WO, films measured in HCI (at pH = 0)
and in H,SO, (at pH = 0) under AM 1.5 Sun light
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Transparent Mesoporous Oxide Electrodes

SnOg Mesoporous film
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Incident photon energy [eV]
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Figure 2; B Solar photon flux density (AM 1.5 Global normalised to 1000 W/m?)

harvested photons by B dye-sensitized solar cell and spectral faradaic
watersplitting activity of Fe,O, prepared in our laboratory, compared to (to our
knowledge) best performing anode materials: WO, and TiO.,,.



Input: solar light of air mass 1.5 global (1000 W/m?2)

Output: hydrogen, standard heat of combustion
AH = - 280 kJ/mol (=1.45 eV/electron)

Solar to chemical conversion efficiency: output/input

N = lon [MA/CM?] X (1.45 - Vpias)
or
N = lpn [MA/CM?] X (1.23 - Vpias)

in terms of free energy of combustion



Research work on the photo-anode

The top electrode consists of an oxide semiconductor (Fe,O,)
absorbing the green, blue and UV photons from the solar light
but transmitting the yellow, red and IR light. Photo-excitation
produces conduction band electrons and valence band holes

Fe,0, + hv = Fe,0; (e~ - h")

The valence band holes oxidize water to oxygen:
4 h* + 2 HO0 = 0, + 4H"

The chemical potential of the conduction band electrons is
raised by the bottom cell providing an electrical bias to afford

hydrogen generation from water

4H" + 4 e- = H,



Ultrasonic Spray Pyrolysis
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Ultrasonic spray pyrolysis

Duret, Alexis; Graetzel, Michael. Visible Light-Induced
Water Oxidation on Mesoscopic a-Fe203 Films Made by
Ultrasonic Spray Pyrolysis. Journal of Physical Chemistry
B (2005), 109(36), 17184-17191



Si-doped

Ultrasonic spray pyrolysis
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Figure 7: X-ray diffraction pattern of a) Si doped Fe,O,
flm on SnO, (hematite peaks marked with H), b)
undoped Fe, O, film on SnO,, c) standard powder pattern
of a-Fe,0; (hematite, black lines with plane indices in
hexagonal coordinates) and SnO, (cassiterite, blue
lines). Films prepared by APCVD],




Model of the hematite crystal lattice viewed in [110] direction, which is preferentially
oriented vertically on the SnO, substrate, illustrating alternating iron bilayers and oxygen
layers parallel to the (001) basal plane (oxygen: red, iron: yellow, hexagonal unit cell: blue).



Atmospheric pressure chemical
vapour deposition (APCVD)



Atmospheric pressure chemical vapor deposition
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Figure 6: Current-voltage characteristics of Silicon doped Fe,O, in darkness
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Light harvesting + Incident photon to current conversion efficiency
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Mechanism for water oxidation catalysis

h™+ OH-
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Research work on the bottom cell

The bottom cell provides the bias potential required to raise the
chemical potential of the conduction band electrons to a level where

hydrogen generation from water can occur
AH* + 4 e- = H,

The bottom cell must sustain the photocurrent generated by the top

cell using the yellow red and near IR part of the sunlight that is
transmitted through the top cell.



Dye sensitized solar cell




Dye-sensitized photovoltaic cells:

TiO, Dye Electrolyte Cathode
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Absorbance [OD]

N719 and trans-[Ru(L)(NCS),]: enhanced near IR response of

trans isomer
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Isodensity plots of main frontier orbitals of N886 U.

LUMO (163)
LUMO+1 (164)



Tandem cell scheme

Ru dye onto TiO
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Decomposition of Water using a Tandem Cell Consisting
of a Mesoporous WO, Film and a Mesoporous Dye
Sensitized TiO, Electrodes




Future work

Solid state tandem cells

Replace CIGS (Si) bottom cell by CulnS2 nanocomposite (Delft) or DSC
using sensitizer with extended near IR absorption.

Photoelectrochemical cell

Continue work on mesoscopic Fe203 films, investigate dopants other
than silicon, optimize juntion between conducting glass subtrate and
Fe203

Examine new mixed oxide photoanode materials, e.g. BiVO4, TaON
Develop DSC with enhanced response in the red and near IR



Solar energy supply to the earth:
ca 3 million exajoules per year

Current energy demand of the world is 400
exajoules per year This could be fully met by
covering ca 0.5% of the earth’s surface with
PV panels having 10% efficiency.

1 exajoule = 108 Joules
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Synthetic Liquid Hydrocarbons

Is this the Future?

Hydrogen + | Carbon

Electricity from Biomass,
renewable sources organic waste,
and electrolysis CO,-recycling
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Liquid hydrocarbons
for hybrid-electric cars




