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THE SOLAR CHALLENGE

● With a projected global population of 12 billion by 2050 
coupled with moderate economic growth, the total global energy 
consumption is estimated to be ~28 TW.  Current global use is 
~11 TW.  

● To cap CO2 at 550 ppm (twice the pre-industrial level), most of 
this additional energy needs to come from carbon-free sources.

● Solar energy is the largest non-carbon-based energy source 
(100,000 TW).

● However, it has to be converted at reasonably low cost.

“A Vision for Photovoltaic Energy Production” Report by the European
Photovoltaic Technology Research Advisory Council ((PV-TRAC)” EUR 21242 (2005)



Photoelectrochemical tandem cell for hydrogen 
generation from water by visible light
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Hydrogen generation by solar photolysis of water

The three options:

1. The brute force approach:
connect at least 4 silicon PV cells in series and couple to
water electrolyzer

2. The integrated tandem cell approach

3. The direct water decomposition by photoelectrochemical 
cells. Remains the “Holy Grail” of research in photoelectrochemistry



Quotation from the DOE report page 209



Characterisation Standard Air Mass1.5
• intensity of 1000 W/m2

• spectral power distribution corresponding to AM1.5 ≡ 1Sun

• temperature 298 K
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Water Photoelectrolysis Cell

Main advantage: energy capture conversion and storage are
combined in a single system
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Generation of hydrogen by photoelectrolysis of water 
n-type semiconductor electrode

A. Fujshima and K. Honda Nature 1972, 238, 37-38, Water photolysis on TiO2 electrodes



Conversion efficiency

Input:  solar light of air mass 1.5 global (1000 W/m2)

Output: hydrogen, standard heat of combustion 
∆H = - 280 kJ/mol (=1.45 eV/electron)

Solar to chemical conversion efficiency: output/input

η  = Iph [mA/cm2] x (1.45 - Vbias)
or

η  = Iph [mA/cm2] x (1.23 - Vbias)

�in terms of free energy of combustion 
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The Z Scheme of biphotonic Water Photolysis



Figure 3: Schematics of tandem cell: Current flow, light absorption 
and device composition. Red part of spectrum drives solar cell.
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The oxide semiconductor top 
electrode 

Effects photocatalytic water oxidation
Absorbs ultraviolet and blue solar light



mesoscopic WO3 or Fe2O3 film

conductive glass support

Nanocrystalline oxide photoanode

Advantage of nanocrystalline
Oxides electrodes:

1) translucent electrode -
avoids light scattering losses

2) Small size is within minority 
carrier diffusion length, the valence
band holes reach the surface before 
they recombine.





I-V curves for WO3 films measured in HCl (at pH = 0) 
and in H2SO4 (at pH = 0) under AM 1.5 Sun light
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Figure 2;       Solar photon flux density (AM 1.5 Global normalised to 1000 W/m2) 
harvested photons by      dye-sensitized solar cell and spectral faradaic
watersplitting activity of Fe2O3 prepared in our laboratory, compared to (to our 
knowledge) best performing anode materials: WO3 and TiO2.



Conversion efficiency

Input:   solar light of air mass 1.5 global (1000 W/m2)

Output: hydrogen, standard heat of combustion 
∆H = - 280 kJ/mol (=1.45 eV/electron)
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Research work on the photo-anode
The top electrode consists of an oxide semiconductor (Fe2O3) 
absorbing the green, blue and UV photons from the solar light 
but transmitting the yellow, red and IR light. Photo-excitation 
produces conduction band electrons and valence band holes 

Fe2O3 +  hν ⇒  Fe2O3 (e- - h+)
The valence band holes oxidize water to oxygen:

4 h+ +  2 H2O  ⇒  Ο2  + 4 H+

The chemical potential of the conduction band electrons is 

raised by the bottom cell providing an electrical bias to afford 

hydrogen generation from water

4 H+ +  4 e- ⇒  Η2
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Ultrasonic spray pyrolysis

Duret, Alexis; Graetzel, Michael.  Visible Light-Induced 
Water Oxidation on Mesoscopic α-Fe2O3 Films Made by 
Ultrasonic Spray Pyrolysis. Journal of Physical Chemistry 
B  (2005),  109(36),  17184-17191



Silicon free Si-doped

Si-doped

Ultrasonic spray pyrolysis



Figure 7: X-ray diffraction pattern of a) Si doped Fe2O3
film on SnO2 (hematite peaks marked with H), b) 
undoped Fe2O3 film on SnO2, c) standard powder pattern 
of α-Fe2O3 (hematite, black lines with plane indices in 
hexagonal coordinates) and SnO2 (cassiterite, blue 
lines). Films prepared by APCVD[2].



Model of the hematite crystal lattice viewed in [110] direction, which is preferentially
oriented vertically on the SnO2 substrate, illustrating alternating iron bilayers and oxygen
layers parallel to the (001) basal plane (oxygen: red, iron: yellow, hexagonal unit cell: blue).



Atmospheric pressure chemical 
vapour deposition (APCVD)



Atmospheric pressure chemical vapor deposition
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Figure 6: Current-voltage characteristics of Silicon doped Fe2O3 in darkness 
and under simulated sunlight at pH=13.6 (1M NaOH). a)   USP[3] b)

unmodified APCVD Fe2O3
[2], c)     the same electrode as b after cobalt 

treatment[2]. The spectral mismatch factor for the USP and APCVD 
measurement is 1.1 and 1.2 respectively.
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Light harvesting + Incident photon to current conversion efficiency



Solar photocurrent spectrum of the cobalt treated Fe2O3 electrode at 1.23 VRHE
obtained by multiplication of its IPCE-spectrum (Fig. 6b) with the photon flux spectrum
of global sunlight (1000 W/m2 AM 1.5 G). b) Total photocurrent under global sunlight
between and a 300 nm given wavelength (integral of curve a).
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Mechanism for water oxidation catalysis



Research work on the bottom cell

The bottom cell provides the bias potential required to raise the 

chemical potential of the conduction band electrons to a level where 

hydrogen generation from water can occur

4 H+ +  4 e- ⇒  Η2

The bottom cell must sustain the photocurrent generated by the top 

cell using the yellow red and near IR part of the sunlight that is 
transmitted through the top cell.



Dye sensitized solar cell

100 nm

TiO2

dye



Dye-sensitized photovoltaic cells: 

COOH anchoring 
groups

M. Graetzel, Nature, 2001, 414, 338.

η=iph Voc ff / Is



Photocurrent-voltage characteristics of N719-1H dye
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N719 and trans-[Ru(L)(NCS)2]:  enhanced near IR response of
trans isomer 
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Isodensity plots of main frontier orbitals of N886



Tandem cell scheme



Decomposition of Water using a Tandem Cell Consisting 
of a Mesoporous WO3 Film and a Mesoporous Dye 

Sensitized TiO2 Electrodes



Future work

Solid state tandem cells

Replace CIGS (Si) bottom cell by CuInS2 nanocomposite (Delft) or DSC 
using sensitizer with extended near IR absorption.

Photoelectrochemical cell

1. Continue work on mesoscopic Fe2O3 films, investigate dopants other 
than silicon, optimize juntion between conducting glass subtrate and 
Fe2O3

2. Examine new mixed oxide photoanode materials, e.g. BiVO4, TaON
3. Develop DSC with enhanced response in the red and near IR



Solar energy supply to the earth:
ca 3 million exajoules per year

• Current energy demand of the world is 400 
exajoules per year This could be fully met by 
covering ca 0.5% of the earth’s surface with 
PV panels having 10% efficiency.

1 exajoule = 1018 Joules



Economics:

A tandem cell of on one square meter surface area that delivers 
10 mA/cm2 photocurrent in full sun would need about 1 month 
in desert climate to produce 1 kg of hydrogen. 

If such a cell could be produced at about 100 $/m2 in large 
scale, the yearly return on investment from selling the 
hydrogen would be 12 %
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