Materials and Structures for Aerospace Propulsion Systems

Scramjets

Aeroturbine

High By-pass Aeroturbine

http://www.aip.org/tip/INPHFA/vol-10/iss-4/p24.html Scramjets integrate air and space by Dean Andreadis

Efficiency of Various Propulsion Cycles: Specific Impulse (Thrust/weight)

MACH NUMBER

Specific Fuel Consumption for Various Concepts

Fuel Efficiency In the Aero-turbine Industry:

Specific Fuel consumption

Engine Temperature Trend

Role of Airfoil Materials

Turbine Airfoil Material Advancements

Specific Strengths of Metallic Systems

More High Temperature Materials

Role of Airfoil Materials

Turbine Airfoil Material Advancements

Superalloy Turbine Air Foils

Equiaxed (EQ) Dir. Sol. (DS)

Single Xtal (SX)

Ni Superalloy Improvements

Modeling at the scale of the grains

Role of Airfoil Materials

Turbine Airfoil Material Advancements

Transverse Section

Nanoscale Porosity

Deposition Effects on Microstructure

Ó

Column Axis [001]

Substrate Normal

¥

β

Interplay with Component Geometry

- VIA allowed VIA allowed Vapor $\Delta \alpha_{net}$ by component by tip Source shadowing shadowing $\Delta \alpha_{macro}$ $\Delta \alpha_{tin}$ Points Points shadowed by tips and shadowed only by tips component
- Reduced coating thickness within recess, quantitatively consistent with reduction in integrated flux due to shadowing by corners.
- Reduced inter-columnar gap width—and increased propensity to sintering—due to elimination of most oblique vapor flux.

Role of Airfoil Materials

Turbine Airfoil Material Advancements

Ceramic Matrix Composites (CMC)

CMC Combustor Liner

Cooling Air Reduction Weight Reduction 20% NOx Reduction CMC Vane

CMC Blade

Weight Reduction Reduced Cooling Air Increased Efficiency

CMC's Reduce Weight and Improve Performance

(MI) SiC/SiC (DENSE MATRIX)
T = 1400C (Metals < 1100C)
➢ High Thermal Conductivity
➢ Inter-laminar Shear Strength
➢ Reduced Sensitivity to Pesting

Transition duct

Braided SiC/SiC Hyper-Therm Inc.

Integrally woven CMC Structures

Alumina anchor tube in CMC skin for pin joint

Angle Interlock Sylramic/SiC

CMC Combustor Liners

CMC Inner Combustor Liner After Engine Testing

- Hi-Nicalon, Slurry Cast
- Successful Engine Testing
- Pre and Post Engine Test NDE Revealed Degradation
- Additional Engine Testing

CMC Combustor Liner Rig & Engine Testing Successful

CMC Applications in Utility Gas Turbines

Hybrid CMC Concept

The **"hybrid" concept** involves use of a moderate temperature (~1100° - 1200°C) CMC structural member bonded to a ceramic insulating material having good stability at 1600°C and good erosion resistance.

- Oxide fiber available
- Insulating material technology available
- Reduces cooling needs drastically

Role of Airfoil Materials

Turbine Airfoil Material Advancements

Thermal Barrier Multilayer: Challenging Thermo-Chemo-Mechanical System

Thermal Property Interplay

RESIDUAL STRESS IN TGO

5 μm

Thermal Barrier Multilayer: Challenging Thermo-Chemo-Mechanical System

YSZ Compatibility with TGO

Bond Coat Chemistry and Structure

Ni, Co

γ

Cr

X-Ray Diffraction Microprobe Orientation Imaging Microscopy (EBSP)

Non-Uniform Distribution of Aluminum Non-Uniform Distribution of Yttrium ?

Degradation Modes In Engines

Delay Spalling By Understanding Mechanisms And Adjusting Constituent Properties

1820 engine cycles

Step I: Identify All Mechanisms Limiting Durability

Step II: Develop Models that Relate Durability to Material Properties

Example I (Intrinisc): Failure by TGO Rumpling

- Strain misfits cause cyclic stresses that motivate cycle-by-cycle crack growth in TBC
- Highly non-linear: Requires numerical code
- Phenomena include TGO lateral growth, thermal expansion misfit (martensite), cyclic plasticity.

•WHAT HAPPENED EARLIER?

DISPLACEMENT INSTABILITY

OBJECTIVE: DEVISE MECHANISM MAPS THAT SPECIFY SALIENT NON-DIMENSIONAL PARAMETERS

UNDERSTAND THE FUNDAMENTALS

Synchotron Measurements

Synchotron Measurements

STRAIN MISFITS: MARTENSITE TRANSFORMATION

- 1. Elastic properties of constituents
- 2. Thermal expansion mismatch between layers.
- 3. Power-law creep.
- 4. Reversible phase transformation in bond coat.
- 5. Growth stress in TGO.
- 6. Thickening and lateral growth strain in the TGO
- 7. Initial Interface Imperfections

ANIMATION OF TGO DISTORTION AND ELONGATION

 \bigwedge

QuickTime[™] and a GIF decompressor are needed to see this picture.

SENSITIVITY STUDY USING MECHANISM MAP: CAN MECHANISM BE SUPPRESSED?

NEW INTERFACE TOUGHNESS TEST

 $G_{side} = \frac{1}{2} S \left(\frac{\pi \delta}{4b}\right)^4 + 2D \left(\frac{\pi}{b}\right)^2 \left(\frac{\pi \delta}{4b}\right)^2$

 $\Gamma = 20 Jm^{-2}$

Work of Separation: Ni/Al₂O₃ interfaces

Failure Modes After Engine Test

Two Basic Erosion and FOD Mechanisms

