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Air flow

Scramjets integrate air and space by Dean Andreadis



Efficiency of Various Propulsion Cycles:
Specific Impulse (Thrust/weight)
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Fuel Efficiency In the Aero-turbine Industry:
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Role of Airfoil Materials
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Specific Strengths of Metallic Systems

Superalloys &
Refractories



More High Temperature Materials
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Superalloy Turbine Air Foils

Equiaxed (EQ)             Dir. Sol. (DS)                   Single Xtal (SX)
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ModelingModeling at the scale of the grainsat the scale of the grains

Single crystal turbine Single crystal turbine 
bladeblade
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Airfoil TechnologyAirfoil Technology
HeatTransfer

High Performance Coating Systems:
Enabling technology for advanced gas turbines



Transverse Section



Al Reservoir

Thermal Barrier Multilayer



Nanoscale Porosity



Deposition Effects on MicrostructureDeposition Effects on Microstructure

Platform Mode

Airfoil Mode



• Reduced coating thickness within recess, 
quantitatively consistent with reduction 
in integrated flux due to shadowing by 
corners.

• Reduced inter-columnar gap width—and 
increased propensity to sintering—due 
to elimination of most oblique vapor flux.20 µm

5 µm2 µm

Interplay with
Component
Geometry

Interplay with
Component
Geometry
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Ceramic Matrix Composites (CMC)

CMC’s Reduce Weight and Improve Performance

CMC Combustor Liner

Cooling Air Reduction 
Weight Reduction
20% NOx Reduction

CMC Vane CMC Blade

Weight Reduction
Reduced Cooling Air
Increased Efficiency



(MI) SiC/SiC (DENSE MATRIX)

T = 1400C (Metals < 1100C)

High Thermal Conductivity

Inter-laminar Shear Strength

Reduced Sensitivity to Pesting



Integrally woven 
CMC Structures

Transition duct

Braided SiC/SiC
Hyper-Therm Inc.

Alumina anchor tube in 
CMC skin for pin joint

Metallic struts 
with CMC skin

Nozzles



±45°

Angle Interlock 
Sylramic/SiC



CMC Inner Combustor Liner After Engine Testing

Hi-Nicalon, Slurry Cast 
Successful Engine Testing
Pre and Post Engine Test NDE  

Revealed Degradation
Additional Engine Testing

CMC Combustor Liner Rig & Engine Testing Successful

CMC Combustor 
Liners



CMC Applications in Utility Gas Turbines

Vanes

Annular Combustors Shroud
Segments

Benefits:
• NOx reductions (50%)
• CO reductions (50%)
• Improved stability
• Life improvement

Benefits:
• 90% cooling air reduction
• Efficiency gains of >1%
• NOx reductions (50%)  

Benefits:
• >90% cooling air reduction
• 0.4% efficiency gain
• Cost savings over SOA technology

Benefits:
• 90% cooling air reduction
• 0.2% efficiency gain
• Reduced tip clearance

These efficiency, 
power, and emissions 
benefits translate to 
$M in annual savings 
for each installation.

These efficiency, These efficiency, 
power, and emissions power, and emissions 
benefits translate to benefits translate to 
$M in annual savings $M in annual savings 
for each installation.for each installation.



Hybrid CMC Concept

The "hybrid" concept involves use of a moderate temperature (~1100° -
1200°C) CMC structural member bonded to a ceramic insulating material
having good stability at 1600°C and good erosion resistance.

• Oxide fiber available
• Insulating material technology available
• Reduces cooling needs drastically

Ceramic
Adhesive
Bond Line

Temp.
1100°C Structural CMC ~4mm

~3mm

Hot Face Temp
1600°C

Cold Face Temp
750°C

FGI Insulation LayerFGI Insulation Layer
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Thermal Barrier Multilayer:
Challenging Thermo-Chemo-Mechanical System 



Thermal Property Interplay



RESIDUAL STRESS IN TGORESIDUAL STRESS IN TGO



Thermal Property Interplay

Slide 24



Thermal Barrier Multilayer:
Challenging Thermo-Chemo-Mechanical System 



As Deposited 

TGO

EB-PVD on FeCrAlY substrate

TGO

After 100h at 1200°C

YSZ Compatibility with TGOYSZ Compatibility with TGO

1200°C

Limit of thermochemical
compatibility ~21%YO1.5

Zirconate
reactive 
with TGO

1 µm

7YSZ compatible with TGO
(no inter-phases formed) 





Degradation Modes In  Engines
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1820 engine cycles

TBC
spallation

Delay Spalling By Understanding
Mechanisms

And Adjusting Constituent
Properties



Step I:Identify All Mechanisms Limiting DurabilityStep I:Identify All Mechanisms Limiting Durability

Step II: Develop Models that Relate Durability to Material Properties



• Strain misfits cause cyclic 
stresses that motivate 
cycle-by-cycle crack 
growth in TBC

• Highly non-linear:
Requires numerical code.

Example I (Intrinisc): Failure by TGO RumplingExample I (Intrinisc): Failure by TGO Rumpling

• Phenomena include TGO 
lateral growth, thermal 
expansion misfit 
(martensite), cyclic 
plasticity.

Martensite

Swelling



LARGE SCALE BUCKLE: THE END OF LIFELARGE SCALE BUCKLE: THE END OF LIFE
••WHAT HAPPENED EARLIERWHAT HAPPENED EARLIER??

Fails at Oxide/Oxide Interface



DISPLACEMENT INSTABILITYDISPLACEMENT INSTABILITY

Relevant Phenomena:
•Elongation/Thickening of TGO

•Plastic Flow of Bond Coat
•Strain Misfit of Bond Coat

Multi-Parameter Phenomenon:

Need Model 

Plus 

Critical Experiments

DESCRIBE CONJOINTLY



OBJECTIVE: DEVISE MECHANISM MAPS THAT SPECIFY SALIENT  
NON-DIMENSIONAL PARAMETERS



UNDERSTAND THE FUNDAMENTALS

TGO



Deformation Mechanism Map Synchotron Measurements



Synchotron Measurements



•Thermal Expansion
•Martensite
•Swelling

“Soften” Bond Coat



STRAIN MISFITS: MARTENSITE TRANSFORMATION

41 42 43 44 45 46 47 48 49

41 42 43 44 45 46 47 48 49

600C

650C

L10

B2



Model Validation: Example

1. Elastic properties of constituents

2. Thermal expansion mismatch between layers.

3. Power-law creep.

4. Reversible phase transformation in bond coat.

5. Growth stress in TGO.

6. Thickening and lateral growth strain in the TGO

7. Initial Interface Imperfections

VALIDATION EXPERIMENTS: AN EXAMPLE



QuickTime™ and a
GIF decompressor

are needed to see this picture.

ANIMATION OF TGO DISTORTION AND ELONGATION



BC

Substrate

Code now in use at GE

Balint-Hutchinson Code
Model 

Validation:
Transition 

to GE

Model 
Validation:
Transition 

to GE

TGO



SENSITIVITY STUDY USING MECHANISM MAP:
CAN MECHANISM BE SUPPRESSED?





USE MECHANISM MAP TO ELIMINATE RATCHETING

Interface Toughness
Becomes Key 

Parameter:
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Mode I Adhesion Energy 
of Metal / Alumina Interfaces



Work of Separation: Ni/Al2O3 interfaces

1.30J/m2

Al-termination O-termination

3.79 J/m2

6.84 J/m2 3.25 J/m2

TBC Ni(Al)/Al2O3 interface:
Fracture at interface
Mode I toughness ~ 20 J/m2 

Pure Ni/Al2O3 interface:
Fracture in Alumina
Mode I toughness > 300 J/m2 

Expt.

Theo.



Failure Modes After Engine Test
Delay Spalling

By Understanding
Mechanisms

And
Adjusting Constituent

Properties



50µm

50µm

Two Basic Erosion and FOD MechanismsTwo Basic Erosion and FOD Mechanisms

I:Elastodynamic

II:Viscoplastic



4

LESimulations

Viscoplastic Domain

QuickTime™ and a
BMP decompressor

are needed to see this picture.

Soft at High Temperature



ELASTO-
DYNAMIC
DOMAIN

Identify Importance of 
Material Properties:

High Toughness
Soft at High Temperature

Erosion Threshold MapErosion Threshold Map
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